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INTRODUCTION:  Resting-state functional magnetic resonance imaging (fMRI) is proving to be an effective tool for mapping the long-range functional 
connections of the brain in both health and disease.  A common but controversial pre-processing step in the analysis of resting-state fMRI data is the removal 
of a global time-course that is the average of all the time-courses within the brain.  It has been argued that global signal regression (GSR) imposes spurious 
negative correlations between brain networks, specifically between the default mode (DMN) and task-positive networks (TPN) [1,2].  In this abstract we use 
principal components analysis to decompose resting-state correlation maps and present a method for ranking the principal components according to their 
relative contributions to a specified functional connectivity map.  The results reveal the structure of resting-state correlation maps: the first ranked 
component is essentially identical to the global signal, and the second component shows the anti-correlation between the DMN and TPN.   
METHODS: The dataset used in this paper was originally analyzed by [3] and downloaded from www.brainscape.org (dataset BS002). This dataset comprises 
17 normal right-handed young adults (9 females).  Image preprocessing steps included slice timing correction, head-motion correction, spatial normalization 
to Talairach space, and spatial smoothing (FWHM = 6mm).  Nuisance terms (including temporal mean, linear trends, and motion parameters) were regressed 
out of each voxel time-course. A low pass filter (0.1Hz cutoff) was applied to the residual data.  Finally, the data were normalized to be unit-norm.  Seed 
regions were defined using spheres with a radius of 6-mm.  A correlation map was then computed by correlating the mean seed signal in the PCC region 
([0,-51,26]) with the time-course from every voxel in the brain.  An additional correlation map after GSR was also formed.  For principal components 
analysis, we organized the data from each run as a M × N  data matrix Y where the columns are the voxel time courses.  Since columns were normalized to 
have zero mean and unit norm, the correlation matrix can be written as C = Y T Y.  Using the singular value decomposition (SVD) Y = UΣV T  we can further 
obtain C = VΣ 2 V T = σ i
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M∑ , where U is a matrix composed of the left singular vectors,

Σ is a diagonal matrix composed of the singular values σ i , and V is composed of the right 
singular vectors v i. Note that the matrix C contains the pair-wise correlations between all 
pairs of voxel time-courses. The jth column of C  corresponds to the correlation map 
describing the correlations of all voxels with the jth voxel.  This map may be expressed as 
the sum of component correlation maps c j = σ i
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M∑ , where vi, j is the jth element of the 

ith component vector. We rank each component by its absolute weight σ i
2 vi, j , which 

depends on both the singular value and the component coefficient vi, j. We can then form a 
low dimensional approximation ˜ c j = σ i(k)
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K∑ , where K is the number of components 

retained and i(k) indicates the component index with the kth rank, with k = 1 corresponding 

to the largest weight max
i

σ i
2 vi, j( ).  In practice, due to the similarity between 

the global signal and the first component (see Results), it is useful to 
modify this ranking so that the first principal component (as ranked by its 
singular value) has the first rank.  In addition, the ranking is readily 
modified to handle seed signals formed from a region of interest by 
replacing the component coefficients vi, j with the spatial average of the 
coefficients over a specified region.    
RESULTS:  Figure 1 shows a correlation map obtained using a seed signal 
from the PCC region (Fig. 1a) and a low-dimensional approximation using 
the top 4 components (Fig. 1b). Note the high degree of similarity between 
the maps.  We found that the global signal was highly correlated with the 
first principal component across all subjects and runs (r > 0.94).  The correlation map 
associated with this component is shown in Fig. 1c.  The second component map (Fig. 1d) 
exhibits the anti-correlated networks of the default mode network and the task positive 
network. Fig. 2 shows the functional connectivity maps with PCC seed region for a 
representative slice from each subject (z = 32 mm).  Rows 1 and 2 shows the correlation 
maps obtained prior to and after GSR, respectively, with the anti-correlated networks 
clearly evident  in the maps obtained with GSR.  Rows 3 through 5 show the low 
dimensional correlation maps obtained when using just the 2nd component, the 2nd and 3rd 
components, and the 2nd through 4th components, respectively.  The 2nd component alone 
captures most of the correlation structure of the anticorrelated networks.  Furthermore, we 
present low-dimensional visualizations of the resting-state data (for 2 subjects) projected 
onto either the top 3 (Figs. 3a and 3b) or top 2 ranked components (Figs 3c and 3d).  In 
these low-dimensional views, the brain regions associated with the default mode network 
(DMN)  (i.e. PCC and MPF) are clearly in a different part of the signal space than the 
regions associated with the task positive network (TPN) (i.e. IPS, FEF, and MT+).   
DISCUSSION:  We have shown that the structure of resting-state correlation maps (with a 
seed signal from the PCC) is well represented by a few principal components, using the 
proposed ranking scheme.  As compared to a conventional ranking scheme based only on 
the singular values, the proposed scheme has the advantage of identifying those 
components that contribute the most to a specified correlation map. Reflecting this 
advantage, the anti-correlated relation between the DMN and TPN is well captured by the 
map associated with the second ranked component.  The relation between the DMN and 
TPN can also be seen in the projections of the data onto the top few ranked components 
(Fig 3.)  Due to the tight relation between the first component and the global signal, the 
process of global signal regression is equivalent to viewing the data within the frame of 
reference of the upper hemisphere of the spheres in Fig. 3.  Note the relation of these two 
regions within this frame of reference is not an artifact of our analysis, but represents a 
relationship inherent in the data. Overall, our results support the existence of an anti-
correlated relation between the DMN and TPN and the general validity of global signal regression.  
REFERENCES: [1] Murphy et al., Neuroimage, 2009.  [2] Fox et al., J Neurophysiol, 2009. [3] Fox et al., PNAS, 2005.  

Fig. 1.  A full correlation map can be well approximated by 
the correlation maps of a few ranked principal components.

Fig. 3. (a,b) Low-dimensional visualization of data structure
on 3-d sphere surfaces spanned by the first three ranked
components; (c,d) projection of data from voxels within the
selected ROIs onto the first two ranked components.

Fig. 2. Connectivity maps with PCC region obtained before GSR (row 1),
after GSR (row 2), and three low-dimensional approximations (rows 3 to
5) for a representative slice from each subject. 
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