Principal Components Analysis Reveals the Correlation Structure of Resting-State fMRI Data
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INTRODUCTION: Resting-state functional magnetic resonance imaging (fMRI) is proving to be an effective tool for mapping the long-range functional
connections of the brain in both health and disease. A common but controversial pre-processing step in the analysis of resting-state fMRI data is the removal
of a global time-course that is the average of all the time-courses within the brain. It has been argued that global signal regression (GSR) imposes spurious
negative correlations between brain networks, specifically between the default mode (DMN) and task-positive networks (TPN) [1,2]. In this abstract we use
principal components analysis to decompose resting-state correlation maps and present a method for ranking the principal components according to their
relative contributions to a specified functional connectivity map. The results reveal the structure of resting-state correlation maps: the first ranked
component is essentially identical to the global signal, and the second component shows the anti-correlation between the DMN and TPN.

METHODS: The dataset used in this paper was originally analyzed by [3] and downloaded from www.brainscape.org (dataset BS002). This dataset comprises
17 normal right-handed young adults (9 females). Image preprocessing steps included slice timing correction, head-motion correction, spatial normalization
to Talairach space, and spatial smoothing (FWHM = 6mm). Nuisance terms (including temporal mean, linear trends, and motion parameters) were regressed
out of each voxel time-course. A low pass filter (0.1Hz cutoff) was applied to the residual data. Finally, the data were normalized to be unit-norm. Seed
regions were defined using spheres with a radius of 6-mm. A correlation map was then computed by correlating the mean seed signal in the PCC region
([0,-51,26]) with the time-course from every voxel in the brain. An additional correlation map after GSR was also formed. For principal components
analysis, we organized the data from each run as a M x N data matrix Y where the columns are the voxel time courses. Since columns were normalized to
have zero mean and unit norm, the correlation matrix can be written as C=Y’Y. Using the singular value decomposition (SVD) Y = UZV’ we can further
obtain C=VZ*V’ =3 IO' v v, , where U is a matrix composed of the left singular vectors,
Y is a diagonal matrix composed of the singular values o;, and V is composed of the right
singular vectors v,. Note that the matrix C contains the pair-wise correlations between all
pairs of voxel time-courses. The jt& column of C corresponds to the correlation map
describing the correlations of all voxels with the jth voxel. This map may be expressed as
the sum of component correlation maps ¢, = =y ,0' v
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Fig. 1. A full corrélation map can be well approximated by
the correlation maps of a few ranked principal components.
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RESULTS: Figure 1 shows a correlation map obtained using a seed signal Subj

from the PCC region (Fig. 1a) and a low-dimensional approximation using Fig. 2. CO”’WC”WW maps W”h pPCC regzon obtamed before GSR (”OW 1),
the top 4 components (Fig. 1b). Note the high degree of similarity between after GSR (row 2), and three low-dimensional approximations (rows 3 to
the maps. We found that the global signal was highly correlated with the 3) for a representative slice from each subject.

first principal component across all subjects and runs (r > 0.94). The correlation map
associated with this component is shown in Fig. 1c. The second component map (Fig. 1d)
exhibits the anti-correlated networks of the default mode network and the task positive
network. Fig. 2 shows the functional connectivity maps with PCC seed region for a
representative slice from each subject (z =32 mm). Rows 1 and 2 shows the correlation
maps obtained prior to and after GSR, respectively, with the anti-correlated networks
clearly evident in the maps obtained with GSR. Rows 3 through 5 show the low
dimensional correlation maps obtained when using just the 2" component, the 2™ and 3™
components, and the 2™ through 4™ components, respectively. The 2™ component alone
captures most of the correlation structure of the anticorrelated networks. Furthermore, we
present low-dimensional visualizations of the resting-state data (for 2 subjects) projected
onto either the top 3 (Figs. 3a and 3b) or top 2 ranked components (Figs 3¢ and 3d). In
these low-dimensional views, the brain regions associated with the default mode network
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(DMN) (i.e. PCC and MPF) are clearly in a different part of the signal space than the . © . @
regions associated with the task positive network (TPN) (i.e. IPS, FEF, and MT+). P e . P e :
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components that contribute the most to a specified correlation map. Reflecting this 04

advantage, the anti-correlated relation between the DMN and TPN is well captured by the 26 : 08

map associated with the second ranked component. The relation between the DMN and 28 ! o8
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(Fig 3.) Due to the tight relation between the first component and the global signal, the
process of global signal regression is equivalent to viewing the data within the frame of Fig. 3. (a,b) Low-dimensional visualization of data structure
reference of the upper hemisphere of the spheres in Fig. 3. Note the relation of these two on 3-d sphere surfaces spanned by the first three ranked
regions within this frame of reference is not an artifact of our analysis, but represents a components; (c,d) projection of data from voxels within the
relationship inherent in the data. Overall, our results support the existence of an anti- selected ROIs onto the first two ranked components.
correlated relation between the DMN and TPN and the general validity of global signal regression.
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