Beyond thresholding: fully-weighted graph representations of brain functional connectivity
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Introduction: Functional connectivity analyses of fMRI data have leveraged recent advances in complex network
theory to derive fundamental properties of brain networks, including scale-free-like and “small world” properties [1].
However, these approaches have conventionally used a cut-off inter-node connection strength to threshold (or binarize)
the network, retaining only the supra-threshold edges. This results in a sparse (and often binary) adjacency matrix
amenable to conventional graph theoretic treatment, but requires the choice of a hard threshold (and verification of
results over a range of such thresholds). The objective of the current study was to characterize the properties of fully-
weighted human brain networks obtained by retaining all edges along with connection strength information, including
the parametric dependence of a power law adjacency function (replacing the hard thresholding operation).

Methods: 3T resting fMRI time series data from NITRC were used in this study (N=25) [2]. Preprocessing included
motion correction, brain extraction, spatial normalization, confound signal removal (white matter, CSF, head motion)
and band-pass filtering (0.01<f<0.1Hz). Fully-weighted networks were created by applying an adjacency function
(rather than a hard threshold) to Pearson correlations 7y between all pairs of time courses from a 90-node brain
parcellation [3]. We employed an adjacency function of a power
law form [4,5] 14/ij=((rij+l)/2)B to map each r;; to a continuous edge ) )
weight w; in the range [0,1] (Fig.1). Power adjacency function

Results: Fully-weighted networks became increasingly scale-free-
like (dominated by low strength nodes, with comparatively few
high-strength ‘hubs’) at values of B>12 (Fig. 2(a)). Similarly,
“small-world” properties, indicated by a clustering (cliquishness of
connections) above that found in random comparator networks,
also became apparent at larger values of f (Fig. 2(b)). Modular
structure was apparent for networks created with p>>1 (Fig. 2(c))
as well as linearly mapped networks (B=1, Fig. 2(d)), albeit with a
reduced dynamic range in the latter case. Node-wise values of
node strength (summed connection weights) and clustering
coefficient correlated strongly with corresponding parameters from

hard-thresholded networks and were most reproducible v
(ICC(1,1)>0.6) for <12. Fig. 1: Power law adjacency function for various

values of f.

Conclusions:

. Fully-weighted = networks
provide a means to replace hard
thresholding with a continuous
mapping of correlation values into
edge weights.

* A power law mapping with
B>>1 allows weaker connections
to be suppressed rather than
removed, avoiding issues related
to network fragmentation.

* pB~12 provided reproducible

(c)

properties with scale-free-like and H

small world behavior similar to 5 3

that found in binary networks. 8 ,

e The linear mapping (B=1)

retained modular structure only. 1
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Fig. 2: (a) Node strength distribution and (b) relative clustering (y) as a function of
power law parameter 3. Modular structure is retained for fully-weighted networks with
B=12 (c¢) and =1 (d), although with less dynamic range in the latter [inset: heaviest
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