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Introduction: Functional connectivity analyses of fMRI data have leveraged recent advances in complex network 
theory to derive fundamental properties of brain networks, including scale-free-like and “small world” properties [1]. 
However, these approaches have conventionally used a cut-off inter-node connection strength to threshold (or binarize) 
the network, retaining only the supra-threshold edges. This results in a sparse (and often binary) adjacency matrix 
amenable to conventional graph theoretic treatment, but requires the choice of a hard threshold (and verification of 
results over a range of such thresholds). The objective of the current study was to characterize the properties of fully-
weighted human brain networks obtained by retaining all edges along with connection strength information, including 
the parametric dependence of a power law adjacency function (replacing the hard thresholding operation).  
 
Methods: 3T resting fMRI time series data from NITRC were used in this study (N=25) [2]. Preprocessing included 
motion correction, brain extraction, spatial normalization, confound signal removal (white matter, CSF, head motion) 
and band-pass filtering (0.01<f<0.1Hz). Fully-weighted networks were created by applying an adjacency function 
(rather than a hard threshold) to Pearson correlations rij between all pairs of time courses from a 90-node brain 
parcellation [3]. We employed an adjacency function of a power 
law form [4,5] wij=((rij+1)/2)β to map each rij to a continuous edge 
weight wij in the range [0,1] (Fig.1). 
 
Results: Fully-weighted networks became increasingly scale-free-
like (dominated by low strength nodes, with comparatively few 
high-strength ‘hubs’) at values of β≥12 (Fig. 2(a)). Similarly, 
“small-world” properties, indicated by a clustering (cliquishness of 
connections) above that found in random comparator networks, 
also became apparent at larger values of β (Fig. 2(b)). Modular 
structure was apparent for networks created with β>>1 (Fig. 2(c)) 
as well as linearly mapped networks (β=1, Fig. 2(d)), albeit with a 
reduced dynamic range in the latter case. Node-wise values of 
node strength (summed connection weights) and clustering 
coefficient correlated strongly with corresponding parameters from 
hard-thresholded networks and were most reproducible 
(ICC(1,1)≥0.6) for β≤12. 
 

Conclusions:  
 Fully-weighted networks 

provide a means to replace hard 
thresholding with a continuous 
mapping of correlation values into 
edge weights. 
 A power law mapping with 
β>>1 allows weaker connections 
to be suppressed rather than 
removed, avoiding issues related 
to network fragmentation.  
 β~12 provided reproducible 

properties with scale-free-like and 
small world behavior similar to 
that found in binary networks. 
 The linear mapping (β=1) 

retained modular structure only. 
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Fig. 1: Power law adjacency function for various 
values of β. 

Fig. 2: (a) Node strength distribution and (b) relative clustering (γ) as a function of 
power law parameter β. Modular structure is retained for fully-weighted networks with 
β=12 (c) and β=1 (d), although with less dynamic range in the latter [inset: heaviest 

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 1603


