Endovaginal magnetic resonance imaging of Stage 1A/1B1 cervical cancer with a T2- and diffusion-weighted magnetic resonance technique: Effect of lesion size and previous cone biopsy on tumor detectability

E. Charles-Edwards¹, V. Morgan¹, A. Attygalle², S. Giles¹, T. E. Ind³, M. Davis⁴, J. Shepherd³, N. McWhinney⁵, and N. deSouza¹

¹CRUK & EPSRC Cancer Imaging Centre, Institute of Cancer Research & Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom, ²Histopathology, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom, ³Gynaecology, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom, ⁴Gynaecology, Kingston Hospital, Kingston, Surrey, United Kingdom, ⁵Gynaecology, Epsom & St. Helier NHS Trust, Epsom, Surrey, United Kingdom

Introduction: Tumor detection within the cervix is dependent on T2-W contrast, with endovaginal imaging offering significant improvement in spatial resolution [1]. Often, the cone or large loop excision of the transformation zone (LLETZ) biopsy on which the diagnosis is made removes a large amount of the disease. The determination of residual disease is crucial in treatment planning: fertility sparing procedures demand a precise knowledge of the site and extent of any residual disease in order to ensure a curative and optimal surgical strategy. The use of diffusion-weighted imaging has potential to discriminate between tumor and granulation tissue in patients following cone biopsy [2]. The purpose of this study therefore was to evaluate the effect of previous cone biopsy and lesion size on the accuracy of detection of Stage 1a/1b1 cervical cancer using endovaginal T2- and diffusion-weighted magnetic resonance imaging.

Method: 113 patients with cervical tumor were imaged using an endovaginal coil with T2-W and diffusion-weighted single-shot echo-planar sequences; 85 (60 with prior cone biopsy/LLETZ) treated with extended cone biopsy /LLETZ (24), trachelectomy (29), hysterectomy (32) were evaluated. ADC maps and T2-W images viewed simultaneously were scored positive or negative for tumor and compared with histology at surgery. MRI tumor volumes (summed areas of regions of interest around lesion on each T2-W slice multiplied by slice thickness); maximum radiological and histological dimensions were recorded. ROC analysis was used to determine cut-off volumes for detecting tumor in those without and with prior cone biopsy/LLETZ and the maximum histological dimension correctly identifiable with MRI. Mean apparent diffusion coefficients (ADCs) calculated from tumor and adjacent normal epithelium were compared.

Results: T2-W and DW-MRI images in patients without (Figure 1) and with (Figure 2) previous cone biopsy are illustrated. Sensitivity and specificity for detecting tumor in those without and with prior cone biopsy/LLETZ (Table 1) were significantly different (p=0.001). Following cone biopsy/LLETZ, MRI tumor volume of 83 mm³ detected tumor with 80% sensitivity, 94.7% specificity; a 5.3 mm maximal histological dimension was detected on MRI with 100% sensitivity, 100% specificity. Tumor ADCs were significantly lower (p=0.001) than paired normal epithelial tissue (median, 988×10⁻⁶ mm²/s vs. 1564×10⁻⁶ mm²/s) but neither tumor nor epithelial ADCs differed significantly between patients with or without prior cone biopsy/LLETZ (p=0.48 and 0.15, respectively, Figure 4).

	TP	TN	FP	FN	Sens %	Spec %	PPV %	NPV %
Cone (n=58)	16	31	7	4	80.0	81.6	69.6	88.6
No cone (n=27)	26	1	0	0	100	100	100	100

Table 1 Sensitivity, specificity, positive and negative predictive values for identifying invasive cervical carcinoma using T2-W and ADC maps in patients without or with previous cone biopsies.

T2-W sagittal
T2-W transverse

T2-W coronal
ADC map coronal

Figure 1 Cervical cancer in a 28 year old female with no cone biopsy or LLETZ prior to MRI. Sagittal (a), axial (b) and coronal (c) T2-weighted images using an endovaginal coil show a 200mm³ (8mm maximum dimension) lesion (arrows) on the right anterior cervical lip which, on the coronal ADC map (d) in the same slice position as c, shows markedly restricted diffusion (arrow). A LLETZ biopsy following MRI (e) confirmed a 9mm tumor nodule (arrow).

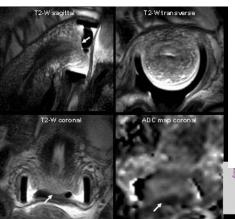


Figure 2 Cervical cancer in a 38 year old female with cone biopsy or LLETZ prior to MRI. Sagittal (a), axial (b) and coronal (c) T2-weighted images using an endovaginal coil show a concave LLETZ defect in a with an irregular 150mm³ (17mm maximum dimension) lesion (arrows) at the transformation zone which, on the coronal ADC map (d) in the same slice position as c, shows markedly restricted diffusion (arrow). A hysterectomy following MRI (e) confirmed a 30mm tumor plaque (arrow).

References [1]deSouza NM et al Gynecol Oncol., 2006, 102; 80-85. [2] Charles-Edwards E et al cone/L

Acknowledgements: Support received from the CRUK and EPSRC Cancer Imaging Centre in association with the MRC and Department of Health (England) grant C1060/A10334, also NHS funding to the NIHR Biomedical Research Centre.



Figure 3 ROC curve of tumor volume in patients who had cone biopsy/LLETZ prior to MRI. True and false positives identified using both T2- and diffusion-weighted endovaginal images give an area under the curve (A_z) of 0.87.

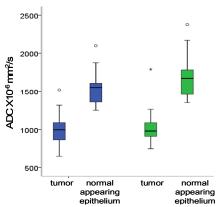


Figure 4 ADC values of invasive cervical carcinoma and adjacent normal appearing epithelium in patients without (blue) and with (green) cone biopsy/LLETZ prior to endovaginal T2-and diffusion weighted MRI show significant differences between tumor and normal appearing epithelium in both groups. However, tumor values and normal appearing epithelial values are similar between groups.

Discussion and Conclusion: A combination of T2-W with diffusion-weighted imaging using an endovaginal technique is invaluable for detecting small cervical cancers, prior to fertility sparing procedures although sensitivity and specificity are lower following a previous cone biopsy/LLETZ procedure. However, the size of tumors detected even post cone/LLETZ is of the order where fertility sparing surgery remains a major management option. This procedure remains to be evaluated in multicentre trials, but offers enormous potential in the pre-operative management of this group of patients.

Radiology 2008, 249; 541-550.