Correction of base-line [Gd] offsets due to effective saturation pulse flip-angle variations in 3T liver DCE-MRI

A. B. Gill^{1,2}, A. N. Priest², R. T. Black¹, D. J. Bowden², M. J. Graves², and D. J. Lomas²

¹Medical Physics, Addenbrooke's Hospital, Cambridge, United Kingdom, ²Radiology, University of Cambridge, Cambridge, United Kingdom

Introduction

A method for acquiring human DCE-MRI data at 3T from the liver, aorta and portal vein has been previously described [1] and is summarised in Figure 1. Two slices with independent orientation are imaged in each heart-beat using a relatively B₁-insenstive saturation-recovery preparation implementation [2]. One slice is positioned sagittally through liver tissue, the other in an oblique plane providing a cross section through the portal vein and aorta. Different saturation-recovery times are used due to the differences in [Gd] in the vessels compared to the liver parenchyma. After a dual-input single compartment pharmacokinetic model was fitted to data collected in this way, results [3] showed reasonable agreement with the literature [4] though a number of issues remained. Firstly, there was a non-zero base-line offset on the calculated [Gd] uptake curves (see Figure 2a) and secondly, the delays associated with tissue arrival times (δ_a and δ_p) from the aorta and portal vein (and fitted as parameters in the model) were calculated to be unrealistically large. This work

investigates applying a correction based on an apparent spatial variation in the effective saturation flip-angle for the aorta, portal vein and liver.

Theory

The following relationship holds for the magnetisation M₅ (see Figure 3) before the sagittal plane read-out, where M0 is the magnetisation recorded with a large saturation recovery time (i.e. at $TS_1 =$ 10 seconds) and where perfect saturation flip-angles are assumed:- $M_5/M0 = (1-\exp(-TS_1/T_1))$. Using the Bloch equations, we can derive a more general expression when the saturation flip-angles are unknown by considering the evolution of magnetisation (M1 to M₅, see Figure 3). We also assume a linear relationship $M = \lambda M_5 + \mu M_0$ between the steady-state magnetisation in the GRE read-out, M, and the initial magnetisation, M₅, before the read-out. This relationship and the values of the linear coefficients λ and μ were determined by simulation of the evolution of magnetisation in a GRE

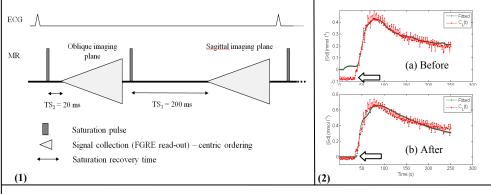
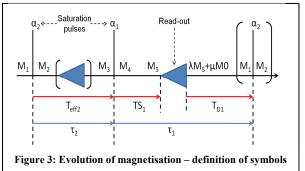


Fig 1: Dual Input-FGRE pulse sequence; Fig 2: fitted curve before and after flip-angle correction

$$\begin{split} \text{Eq 1} \qquad & \frac{\textit{M}_{5}}{\textit{M0}} = \frac{\left((1 - (1 - \mu).e^{-T}\textit{D}1/T_{1}).e^{-T}\textit{eff}2/T_{1}.cos\alpha_{2} + \left(1 - e^{-T}\textit{eff}2/T_{1} \right) \right).cos\alpha_{1}.e^{-TS_{1}/T_{1}} + \left(1 - e^{-TS_{1}/T_{1}} \right)}{1 - \lambda.e^{-T}\textit{D}1/T_{1}.e^{-T}\textit{eff}2/T_{1}.e^{-TS_{1}/T_{1}.cos\alpha_{1}.cos\alpha_{2}}} \\ & ... \textit{and defining:} - D = e^{-T}\textit{D}1/T_{1}, \quad E = e^{-T}\textit{eff}2/T_{1}, \quad F = e^{-TS_{1}/T_{1}}, \quad A = cos\alpha, \quad M' = \textit{M}_{5}/\textit{M0} \\ & P = (1 - (1 - \mu).D).E.F, \quad Q = (1 - E).F, \quad R = 1 - F, \quad L = \lambda.D.E.F \quad ... \textit{yields:} - \\ & \text{Eq 2} \qquad \qquad (P + \textit{LM}').A^{2} + Q.A + (R - \textit{M}') = 0 \end{split}$$

sequence using the EPG (extended phase graph) method [5,6] and literature values of T₁ and T₂ for blood and liver tissue. This process yields Equation 1, where the symbols are defined in Figure 3. Note that time-stamps in the pulse sequence yield the time intervals τ_1 and τ_2 from which T_{eff2} and T_{D1} can be calculated, the read-out time being known from the TR. We further assume that the saturation flip-angles α_1 and α_2 are equal (= α) to re-arrange Equation 1 as a quadratic in A, the cosine of the flip-angle α (see Equation 2). When using the GRE sequence for DCE-MRI, the precontrast T₁ (T₁₀) is obtained from a separate Look-Locker based measurement [7]. T₁₀ can be used, along with the pre-contrast signal, to derive all the coefficients in Equation 2 and hence solve for $\alpha = \cos^{-1}(A)$. The root closer to zero is chosen to give α nearer to 90°, and in the case of complex roots the real part is taken. With this knowledge of α , an inversion of Equation 1 can then be used to tabulate T_1 for any measured signal. Knowledge of T₁(t) then enables calculation of the [Gd] time series using the following equation (where r is the relaxivity of the contrast agent used): $r.[Gd] = (1/T_1) - (1/T_{10})$. The process can be repeated for the first slice



acquisition by exchanging the relevant timing parameters. The methods were implemented in Matlab (The Mathworks, Natick, MA).

Methods and results

The method was applied to data from 7 volunteers who had been scanned as part of an ethically approved feasibility study [3] (preceding a study on patients with liver tumours). Of the 7 data-sets, 4 gave real roots and 3 complex roots. Analysis of all 7 data-sets gave a mean total perfusion of 63 ± 28 ml/min/100ml and a mean arterial fraction of 15 \pm 12 %. The mean tissue arrival time delays, δ_a and δ_p , were measured as 3.9 \pm 2.4 and 2.7 \pm 2.3 s respectively. Interestingly, the mean flip-angle consistent with this analysis within the liver region of interest was 102 ± 13°, range [88.2, 120.6]), for the aorta $88.2 \pm 0.9^{\circ}$, [87.0, 89.0] and for the portal vein, $87.9 \pm 1.0^{\circ}$, [86.1, 88.9].

This flip-angle correction method has been used to correct base-line offsets in [Gd] (see Figure 2b), leading to improved kinetic modelling of liver DCE-MRI data. The results for total perfusion and arterial fraction are within the range reported by other groups [4]. The mean time delays of 3.9 ± 2.4 and 2.7 ± 2.4 and 22.3 s for δ_a and δ_p respectively show a significant reduction (p < 0.01) from values recorded without the correction (8.9 ± 3.2 and 8.3 ± 2.8 s, for δ_a and δ_p respectively) and are more realistic physiologically.

References

- [1] Black RT et al, Proc ISMRM 3562 (2007)
- [2] Oesingmann N et al, J Card Magn Reson 2004:6(1):373-374
- [3] Gill AB et al, Proc ISMRM 2010;18:2597
- [4] Hagiwara M et al, Radiology 2008;246:926-934

[5] Hennig JJ, Magn Reson 1988;78:397-407

[6] Priest AN et al, Proc ISMRM 2415 (2005)

[7] Messroghli DR et al, Magn Reson Med 2004;52:141-146

Acknowledgements Addenbrookes Charitable Trust, NIHR Cambridge Biomedical Research Centre