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PURPOSE: Improvements in DCE-MRI data quality are increasingly generating a need for advanced compartmental models to better describe the
physiology underlying these data [1]. However, this development is severely constrained by the fact that analytical solutions exist for only the
simplest multi-compartment models. Even when such solutions do exist [2], they are algebraically complicated and do not provide much physical
insight. In this study an intuitive approach is presented for generating approximations to multi-compartment models for DCE-MRI with any desired
accuracy. The method is illustrated by application to the two-compartment exchange model (2CXM) [2].

METHODS: We use the following definitions and relations. A multi-compartment model can be depicted as a flow graph [3], where each node
represents a compartment, and the arrows represent tracer current between nodes. The paths of the model are the possible trajectories that a
tracer particle can take in passing through the system. The order of a path is the number of nodes that a particle enters on the path, and the
exponent of an arrow on a path is the number of times a particle crosses the arrow. Each node X is characterised by a mean transit time Ty, and
each arrow A by a flow Fa. The capacity of an arrow A ending in a compartment X is the ratio of F, to the sum of all flows leaving X. The propagator
H(t) of the system is the distribution of transit times. H(t) relates the tracer concentration C,(t) at the inlet and the flow F through the inlet to the
total concentration C(t) inside the system: C=F*C, - F*H*C, [4]. The propagator of a compartment X is Hy(t)=exp(-t/Tx)/Tx, and the propagator of a
series of n identical compartments X is Hy™(t)=Hy(t) (t/Tx)"/(n-1).

RESULTS: We derived a graphical method for generating a convergent series expansion H=X;P;H;, based
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on the principle that H is the sum of propagators H; for all possible paths i, each weighted by the
oasf | A1 ] probability P; that a particle follows the path i. The series is obtained in four steps, illustrated in fig 1 for
i the 2CXM: (a) define the system by drawing a flow graph, and labelling all nodes and the flows of each
arrow; (b) calculate the capacities of each arrow; (c) graphically list the paths through the system in
increasing order, and label each arrow by its exponent; (d) for each path i, calculate P; as the product of

the capacities of all arrows on the path i, and H; as the convolution of the propagators of all nodes on the
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path i (using the formulae for Hy and HX(") ). A simulation up to 3% order using a population-averaged C,

[5] is shown in fig 2. The result shows that the series converges at relatively low orders, and that higher
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orders are only required at longer acquisition times.

s : 2 3 : 5 CONCLUSION: Using the principles set out here, the analytical solution for arbitrary multi-compartment
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Fig 2. Numerical illustration for a 2CXM models can be written out to any desired accuracy by graphically listing in order the paths through the

with E=20%, F=50ml/min/100ml, v,=5% system. Since higher-order paths are increasingly unlikely, and have increasingly long transit times, the
and v,=10%. Shown are the exact C(t) (full [ series becomes accurate at some finite order k. The method increases the physical insight in the
line) and the approximations up to 3¢ behavi £ | | del d will all freed d flexibility in th
lowest order (dotted). ehaviour of more complex compartmental models, and will allow more freedom and flexibility in the

design of advanced models for particular applications.
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Fig 1. The four steps (a-d) to derive the series expansion of H, illustrated for the 2CXM. (a) The diagram shows the compartments
plasma (p) and interstitium (e), and flows F and PS. (b) All capacities can be expressed in terms of the extraction fraction E=PS/(PS+F).
(c) The three lowest-order paths: the 15t order path passes through p and then leaves the tissue; the 2" order passes consecutively
through p, e, p before leaving; the 39 order passes through p, e, p, e, p, and so on. (d) Probabilities and propagators for each of the
paths in (c). Note that the graphical exponents in (c) directly translate to the algebraic exponents in (d).
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