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PURPOSE: Improvements in DCE-MRI data quality are increasingly generating a need for advanced compartmental models to better describe the 
physiology underlying these data [1]. However, this development is severely constrained by the fact that analytical solutions exist for only the 
simplest multi-compartment models. Even when such solutions do exist [2], they are algebraically complicated and do not provide much physical 
insight. In this study an intuitive approach is presented for generating approximations to multi-compartment models for DCE-MRI with any desired 
accuracy. The method is illustrated by application to the two-compartment exchange model (2CXM) [2]. 

METHODS: We use the following definitions and relations. A multi-compartment model can be depicted as a flow graph [3], where each node 
represents a compartment, and the arrows represent tracer current between nodes. The paths of the model are the possible trajectories that a 
tracer particle can take in passing through the system. The order of a path is the number of nodes that a particle enters on the path, and the 
exponent of an arrow on a path is the number of times a particle crosses the arrow. Each node X is characterised by a mean transit time TX, and 
each arrow A by a flow FA. The capacity of an arrow A ending in a compartment X is the ratio of FA to the sum of all flows leaving X. The propagator 
H(t) of the system is the distribution of transit times. H(t) relates the tracer concentration Ca(t) at the inlet and the flow F through the inlet to the 
total concentration C(t) inside the system: C=F*Ca - F*H*Ca [4]. The propagator of a compartment X is HX(t)=exp(-t/TX)/TX, and the propagator of a 
series of n identical compartments X is HX

(n)(t)=HX(t) (t/TX)n-1/(n-1)!. 

RESULTS: We derived a graphical method for generating a convergent series expansion H=ΣiPiHi, based 
on the principle that H is the sum of propagators Hi for all possible paths i, each weighted by the 
probability Pi that a particle follows the path i. The series is obtained in four steps, illustrated in fig 1 for 
the 2CXM: (a) define the system by drawing a flow graph, and labelling all nodes and the flows of each 
arrow; (b) calculate the capacities of each arrow; (c) graphically list the paths through the system in 
increasing order, and label each arrow by its exponent; (d)  for each path i, calculate Pi as the product of 
the capacities of all arrows on the path i, and Hi as the convolution of the propagators of all nodes on the 
path i (using the formulae for HX and HX

(n)
 ). A simulation up to 3d order using a population-averaged Ca 

[5] is shown in fig 2. The result shows that the series converges at relatively low orders, and that higher 
orders are only required at longer acquisition times. 

CONCLUSION: Using the principles set out here, the analytical solution for arbitrary multi-compartment 
models can be written out to any desired accuracy by graphically listing in order the paths through the 
system. Since higher-order paths are increasingly unlikely, and have increasingly long transit times, the 
series becomes accurate at some finite order k. The method increases the physical insight in the 
behaviour of more complex compartmental models, and will allow more freedom and flexibility in the 
design of advanced models for particular applications. 
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