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Introduction: J-coupling causes spectral splitting and complicated signal modulation that limit the detection of important brain
metabolites, such as Glu, in proton spectroscopic imaging. While 2D spectroscopy, e.g. 2DJPRESS [1] and CTPRESS [2], has
been demonstrated to successfully improve signal detection of coupled spins, it carries a penalty in scan time and reconstruction
complexity. To counter this limitation, Mayer et al [3] exploited the diagonal feature of CTPRESS spectra to achieve four-fold
undersampling without adverse aliasing artifacts. Exploration of further undersampling in 2D spectroscopy via compressed
sensing appears promising as 2D spectra are naturally sparse and data sampling along the t; encoding direction readily
accommodates flexible sampling patterns. Here we modeled metabolite spectra for an under-sampled, noisy 2D CTPRESS
spectroscopy at 3T, and evaluated the performance of multi-task Bayesian CS [4,5] which incorporated priors for regularization
during reconstruction and compared it with Lustig's [6] implementation of conjugate gradient CS and single-task Bayesian CS [7].
Methods Using SPINEVOLUTION [8], 7 brain metabolites [9], (10 mM NAA, 7.9 mM Cr, 1.6 mM Cho, 9.2mM Glu, 4.5mM
_ GIn, 6mM myo-Inositol, 0.4mM Lac) were simulated in a uniformly under sampled,

a. MaskforR =2 c. Fully Sampled  d. Fully Sampled Noisy i . R . L.
2Xacceleration  Noiselessspectra  spectraatSNR =15 32-t; step CTPRESS experiment with non-interfering aliasing as proposed by Mayer

£ Tger I e I et al [3]. This 32-step 2D experiment is considered the baseline for further
;Z ; S ' | undersampling in this study, and was undersampled in the t; dimension by factor R

R L as determined by a random draw from a uniform distribution. Gaussian noise was
b. Mask for R = 3 added such that SNRyaa = 15 at full sampling. Reconstruction of the 2D spectra was

oy obtained via three methods: i) CS via the non-linear conjugate-gradient solution [6],

ii) Single-Task Bayesian CS [7], and iii) Multi-Task Bayesian CS [4]. The nonlinear
conjugate-gradient solution is reproduced as Eq. 1 where y contains under sampled
data, @ is the sparse Fourier Transform , and m is the reconstructed data. A is chosen
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Fig.1. a. Mask for undersampling factor R = 2,

white lines are sampled b. Mask for R = 3. as a balance between measurement consistency and enforced sparsity. In the joint
¢. Fully sampled noise-free CTPRESS data. Bayesian CS (Egs. 2, 3 and 4) y,’s represent the under-sampled complex data, and
d. Fully sampled noisy data. fully sampled individual metabolite magnitude spectra as basis functions. The
b. Conjugate ¢. Single-Task d Multi-Task _ b.Conjugate  c.Single-Task  d. Multi-Task magnitude .spectra. were
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Fig.2. Reconstructed R = 2 spectra on equally-scaled Fig.3. Reconstructed R =3 spectra on equally-scaled . .
plot a. Zero-filling b. Conjugate Gradient c¢. Single-task plot a. Zero-filling b. Conjugate Gradient c. Single- taken as its best 'estlmate.
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expression for oy and A is conditioned upon all the y;’s and the maximization of

argmin,, =|| ®m—y |2 +A||m||, this expression leads to evaluating u; and . In single-task Bayesian CS, the
Eq.1 expression for oy and A is conditioned only on the under sampled spectra.

Py, [m,.2)pm, | &) Fa.2 Results and Discussion: Fig 2 and 3 show the reconstructed 2D spectra and

J. dm; - p(y, | m;,00)p(m, | @) corresponding 1D diagonal spectra for A= 0.05 and R =2 and R =3. At R =2,

H=o,2®,y, Ea-3 | the three CS methods restore NAA, Cr, Cho peaks in the diagonal spectra that

T, = (0, ®, @, + A)! Ea.4 | were obscured in the zero-filled reconstruction. In addition Glu peaks were

visible in the multi-task Bayesian CS reconstruction. At higher acceleration of

R =3, only NAA peaks were visible in the conjugate gradient CS reconstruction. Multi-task Bayesian CS reconstruction benefited
from the prior information of fully sampled metabolite basis spectra, and recovered NAA, Cr, Cho, Glu peaks successfully.
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