

## Multi Task Bayesian Compressed Sensing in Sparse 2D Spectroscopy

T. Kok<sup>1</sup>, B. Bilgic<sup>1</sup>, and E. Adalsteinsson<sup>1,2</sup>

<sup>1</sup>Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, <sup>2</sup>Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

**Introduction:** J-coupling causes spectral splitting and complicated signal modulation that limit the detection of important brain metabolites, such as Glu, in proton spectroscopic imaging. While 2D spectroscopy, e.g. 2DJPRESS [1] and CTPRESS [2], has been demonstrated to successfully improve signal detection of coupled spins, it carries a penalty in scan time and reconstruction complexity. To counter this limitation, Mayer et al [3] exploited the diagonal feature of CTPRESS spectra to achieve four-fold undersampling without adverse aliasing artifacts. Exploration of further undersampling in 2D spectroscopy via compressed sensing appears promising as 2D spectra are naturally sparse and data sampling along the  $t_1$  encoding direction readily accommodates flexible sampling patterns. Here we modeled metabolite spectra for an under-sampled, noisy 2D CTPRESS spectroscopy at 3T, and evaluated the performance of multi-task Bayesian CS [4,5] which incorporated priors for regularization during reconstruction and compared it with Lustig's [6] implementation of conjugate gradient CS and single-task Bayesian CS [7].

**Methods** Using SPINEVOLUTION [8], 7 brain metabolites [9], (10 mM NAA, 7.9 mM Cr, 1.6 mM Cho, 9.2 mM Glu, 4.5 mM

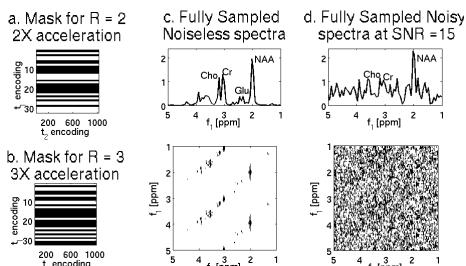


Fig.1. **a.** Mask for undersampling factor  $R = 2$ , white lines are sampled **b.** Mask for  $R = 3$ . **c.** Fully sampled noise-free CTPRESS data. **d.** Fully sampled noisy data.

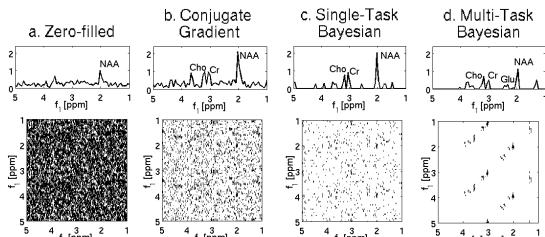
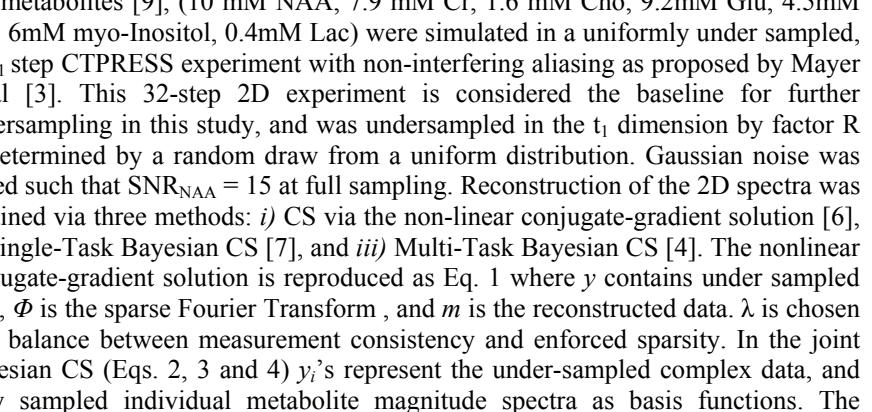


Fig.2. Reconstructed  $R = 2$  spectra on equally-scaled plot **a**. Zero-filling **b**. Conjugate Gradient **c**. Single-task Bayesian **d**. Multi-task Bayesian.



magnitude spectra were used as basis functions to approximate scanning conditions where phase priors are uncertain.  $\alpha_0$  and  $\mathbf{A}$  are the priors placed across all the spectra, and  $\mu_i$  is the mean of posterior distribution for  $m_i$  and is taken as its best estimate. The log-likelihood

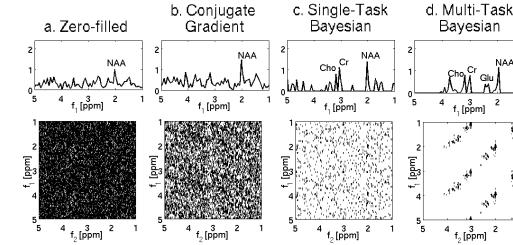


Fig.3. Reconstructed  $R = 3$  spectra on equally-scaled plot **a**. Zero-filling **b**. Conjugate Gradient **c**. Single-task Bayesian **d**. Multi-task Bayesian

$$argmin_m = \|\Phi m - v\|_2^2 + \lambda \|m\|_2$$

Eq.1

$$p(m_i | y_i, \alpha, \sigma^2) = \frac{p(y_i | m_i, \alpha_0) p(m_i | \alpha)}{\int dm_i \cdot p(y_i | m_i, \alpha_0) p(m_i | \alpha)}$$

Eq.2

$$\mu_i = \alpha_0 \Sigma_i \Phi_i^T v_i$$

Eq. 3

$$\Sigma_t \equiv (\alpha_t \Phi_t^T \Phi_t + A)^{-1}$$

Eq 4

$R = 3$ , only NAA peaks were visible in the conjugate gradient CS reconstruction. Multi-task Bayesian CS reconstruction benefited from the prior information of fully sampled metabolite basis spectra, and recovered NAA, Cr, Cho, Glu peaks successfully.

**References:** [1] Hurd R et al; MRM 2004; 51:435-440. [2] Dreher et al; MRI 1999; 17:141-150 [3] Mayer D et al; MRM 2005; 54:439-442 [4] Ji et al; IEEE Trans. Sig. Proc 2009; 57:92-106 [5] Bilgic et al; ISMRM 2011 [6] Lustig M et al; MRM 2007; 58:1182-1195 [7] Ji et al; IEEE Trans. Sig. Proc 2008; 56:2346-2356 [8] Veshtort M et al; JMR 2006; 178:248-282 [9] Traber FB et al; JMRI 2004; 19:537-545

This work was supported by Siemens Medical Solutions, NIH R01EB007942, Siemens-MIT Alliance, NSF