
 

Fig.1.  a. Mask for undersampling factor R = 2,
white lines are sampled b. Mask for R = 3.  
c. Fully sampled noise-free CTPRESS data.  
d. Fully sampled noisy data. 

 

 
Fig.2. Reconstructed R = 2 spectra on equally-scaled
plot a. Zero-filling b. Conjugate Gradient c. Single-task
Bayesian d. Multi-task Bayesian.  
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Fig.3. Reconstructed R = 3 spectra on equally-scaled
plot a. Zero-filling b. Conjugate Gradient c. Single-
task Bayesian d. Multi-task Bayesian  
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Introduction: J-coupling causes spectral splitting and complicated signal modulation that limit the detection of important brain 
metabolites, such as Glu, in proton spectroscopic imaging. While 2D spectroscopy, e.g. 2DJPRESS [1] and CTPRESS [2], has 
been demonstrated to successfully improve signal detection of coupled spins, it carries a penalty in scan time and reconstruction 
complexity. To counter this limitation, Mayer et al [3] exploited the diagonal feature of CTPRESS spectra to achieve four-fold 
undersampling without adverse aliasing artifacts. Exploration of further undersampling in 2D spectroscopy via compressed 
sensing appears promising as 2D spectra are naturally sparse and data sampling along the t1 encoding direction readily 
accommodates flexible sampling patterns. Here we modeled metabolite spectra for an under-sampled, noisy 2D CTPRESS 
spectroscopy at 3T, and evaluated the performance of multi-task Bayesian CS [4,5] which incorporated priors for regularization 
during reconstruction and compared it with Lustig's [6] implementation of conjugate gradient CS and single-task Bayesian CS [7].  
Methods Using SPINEVOLUTION [8], 7 brain metabolites [9], (10 mM NAA, 7.9 mM Cr, 1.6 mM Cho, 9.2mM Glu, 4.5mM 

Gln, 6mM myo-Inositol, 0.4mM Lac) were simulated in a uniformly under sampled, 
32-t1 step CTPRESS experiment with non-interfering aliasing as proposed by Mayer 
et al [3]. This 32-step 2D experiment is considered the baseline for further 
undersampling in this study, and was undersampled in the t1 dimension by factor R 
as determined by a random draw from a uniform distribution. Gaussian noise was 
added such that SNRNAA = 15 at full sampling. Reconstruction of the 2D spectra was 
obtained via three methods: i) CS via the non-linear conjugate-gradient solution [6], 
ii) Single-Task Bayesian CS [7], and iii) Multi-Task Bayesian CS [4]. The nonlinear 
conjugate-gradient solution is reproduced as Eq. 1 where y contains under sampled 
data, Φ is the sparse Fourier Transform , and m is the reconstructed data. λ is chosen 
as a balance between measurement consistency and enforced sparsity. In the joint 
Bayesian CS (Eqs. 2, 3 and 4) yi’s represent the under-sampled complex data, and 
fully sampled individual metabolite magnitude spectra as basis functions. The 

magnitude spectra were 
used as basis functions to 
approximate scanning 
conditions where phase 
priors are uncertain.  α0 and 
A are the priors placed 
across all the spectra, and μi 
is the mean of posterior 
distribution for mi and is 
taken as its best estimate. 
The log-likelihood 

expression for α0 and A is conditioned upon all the yi’s and the maximization of 
this expression leads to evaluating μi and Σi. In single-task Bayesian CS, the 
expression for α0 and A is conditioned only on the under sampled spectra.  
Results and Discussion: Fig 2 and 3 show the reconstructed 2D spectra and 
corresponding 1D diagonal spectra for λ= 0.05 and R = 2 and R =3. At R = 2, 
the three CS methods restore NAA, Cr, Cho peaks in the diagonal spectra that 
were obscured in the zero-filled reconstruction. In addition Glu peaks were 
visible in the multi-task Bayesian CS reconstruction. At higher acceleration of 

R = 3, only NAA peaks were visible in the conjugate gradient CS reconstruction. Multi-task Bayesian CS reconstruction benefited 
from the prior information of fully sampled metabolite basis spectra, and recovered NAA, Cr, Cho, Glu peaks successfully.  
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et al; JMRI 2004;19:537–545.  
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