

Define impact of fasting on human brain acid-base homeostasis using natural abundance ^{13}C and ^{31}P MRS

N. Sailasuta¹, K. C. Harris¹, T. Tran¹, and B. D. Ross¹

¹Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institute, Pasadena, California, United States

Background: It is often assumed, that fasting impacts intracellular brain pH, resulting in acidosis. We recently reported, ^{13}C brain bicarbonate falls significantly ($p \leq 0.007$) after 4 and 12 hours of fasting [1] and predicted significant acidification of the brain. However, results of human and rodent studies for example in ketogenic diets have been mixed. Pan et al [2] argue in favor cerebral alkalinization in brain of fasted humans, based upon elevated intracerebral lactate; working in diabetic ketoacidotic rats Al-Mudallal et al [3] saw no pH change and Glaser et al [4] observed acidification. We have therefore extended our study in the same cohort of subjects using proton-decoupled (dc) ^{31}P MRS to define intracerebral pH during fasting.

Human Subjects and Methods: Using 1.5T GE MR scanner equipped with second rf channel and head coils dual tuned to proton- ^{13}C and proton- ^{31}P 5 subjects underwent natural abundance ^{13}C MRS in the fed state and after 4 and 12 hours of fasting. ^{13}C MRS data acquisition was described previously [5]. Dc ^{31}P MRS was performed ($N=6$) in fed state and after 4 and 12 hours of fasting; four of the subjects were among those previously examined with dc ^{13}C MRS. Intracerebral pH was calculated from PCr to Pi chemical shift using [6].

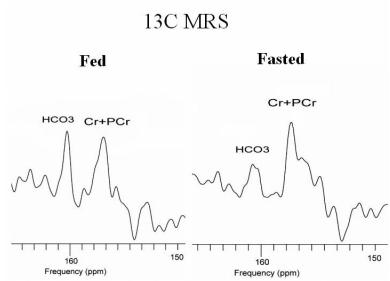


Figure 1. Natural abundance ^{13}C bicarbonate and PCr + Cr in fed (left) and fasted (right) human volunteer.

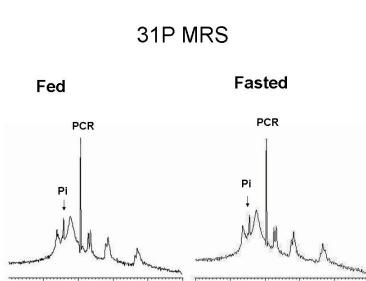


Figure 2. dc ^{31}P MR spectrum in fed (left) and fasted (right) in same volunteer.

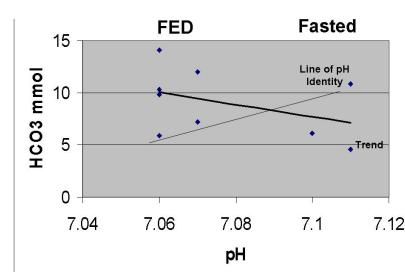


Figure 3. Lack of correlation between intracerebral HCO_3 and pH in fed and fasted individuals.

Table 1. Effect of fasting on HCO_3 and pH in normal human subjects.

	Fed	Fasted	Δ	P-value
HCO_3	11.4 ± 2.0	7.3 ± 2.4	04.1	0.10
pH	7.07 ± 0.01	7.09 ± 0.02	0.03	0.02
pH paired t-test n=6		HCO_3 paired t-test n=4		

Results: The striking reduction in intra-cerebral HCO_3 /PCr + Cr induced by fasting is shown in Figure 1. Fasting did not result in significant change in [PCr] (Figure 2) confirming the prior conclusion that the altered metabolite ratio is exclusively the result solely of the reduction in [HCO_3]. Fasting was not associated with any reduction in intracerebral pH (Table 1); although the small effect observed was statistically significant, the direction of that change (+0.02 pH Units) was alkalinization rather than the acidification predicted by the significant concomitant reduction in [HCO_3]. Finally, there was no correlation between the change in HCO_3 and intracerebral pH (Figure 3).

Discussion and Conclusions: According to the Henderson Hasselbalch equation, reduced HCO_3 should have a corresponding decrease in either intracerebral pH or a significant increase in CO_2 in order to maintain pH homeostasis. In severe brain trauma and other medical emergencies, an invasive pCO_2 probe is frequently used for that purpose. The present data suggests that [HCO_3] assay may be equally relevant. This 'missing' data may explain some contradictory clinical outcomes when bicarbonate replacement therapy is employed in emergent clinical situations [7].

References: 1) Sailasuta, N and Ross, BD ISMRM 2010. (2) Pan et al. JCBFM 2000 ; 20 :1502-1507. (3) Al-Mudallal et al. Epilepsia 1996 ; 37(3) :258-61. (4) Glaser et al. Diabetes 2005; 54:510-516. (5) Sailasuta et al. JMR 195 (2008) 219- 25. (6) Petroff OA et al. Neurology: 1985; 35: 781-788. (7) Shapiro et al. Am J Physiol Heart Circ Physiol 1989 ; 256 : H1316-1321.

Acknowledgements : Work supported by NIH (NS), RSRI (TT, BDR).