

Whole Liver ^{31}P Metabolite Mapping with 3D CSI

S. Jones^{1,2}, A. Panda^{1,2}, and U. Dydak^{1,2}

¹Health Sciences, Purdue University, West Lafayette, IN, United States, ²Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States

Introduction

It has been shown that 3D ^{31}P CSI sequences can be used to enhance spatial coil coverage of the single-channel coil to acquire 3D ^{31}P spectroscopic data [1]. Furthermore, multi-channel ^{31}P phased-array coils can be used to acquire data from the entire abdominal slice using a 2D CSI sequence [2]. If the coil is large enough to wrap around the entire liver, 3D MR spectroscopic data can also be acquired for the entire liver by combining these two methods. However, lack of such coils and long scan times (long TR and large averages) for ^{31}P spectroscopy have prevented the acquisition of such data in the past. In this abstract we present ^{31}P in-vivo MRSI data collected from the entire liver using a 3D CSI sequence, allowing for whole liver metabolite mapping for the first time.

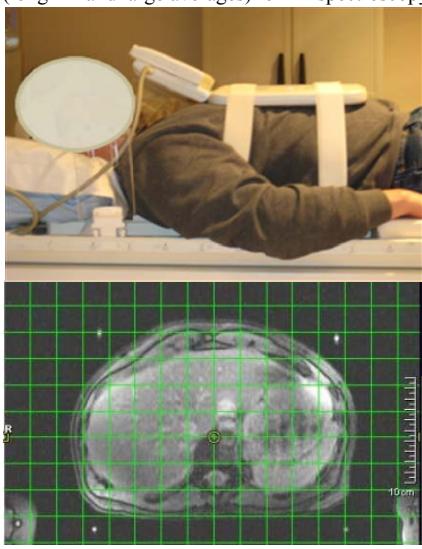


Figure 1: Coil coverage and Setup. Bright spots from the water filled fiduciary markers show the physical coil coverage.

extent of the coil. Figure 3 shows the metabolite maps for ^{31}P metabolites obtained for the entire liver. As expected the signal is strongest in slices centered on the liver and falls off as we move away. Furthermore, it can be seen that PCr mainly originates from muscle tissue, while Pi, alpha-ATP, and gamma-ATP are highly concentrated in the liver and spleen. A significant drop in the SNR is observed for the slices close to the abdomen and heart because of signal loss from breathing.

Discussion

Original scan time for full 3D CSI data acquisition was well over an hour, which was reduced to 30 minutes by using weighted averaging. A 100% Hamming acquisition filter was applied to reduce side lobe amplitudes and minimize PCr signal leakage into liver voxels. The above results clearly show that a multi-channel ^{31}P coil enables quality spectra to be obtained from the entire liver in a single scan session. The acquisition time for the 3D data (~30 min, 12 weighted averages) is comparable with the acquisition time of a 2D CSI scan (~25 min, 30 weighted averages), yet the increase in volume (slices) and quality (SNR) of data acquired are increased by approximately eight and two fold, respectively. Implementation of GRAPPA data acquisition with 3D acquisition is currently being investigated, which may enable further reductions in scan time while maintaining acceptable levels of SNR [4].

References: [1] Chemlik M, AI Schmid, et. al., Magn Reson Med 2008; 60(4):796-802; [2] Panda A et. al., Proc. ISMRM, 2009; [3] Panda A et. al., Proc. ISMRM, 2010; [4] Vanhamme, L. et. al., J. Magn Reson., 1997;129:35-43; [5] Stefan D, et. al., MAGMA, 370, 15, 2002; [6] Raghavan RS et. al., Proc. ISMRM, 2009.

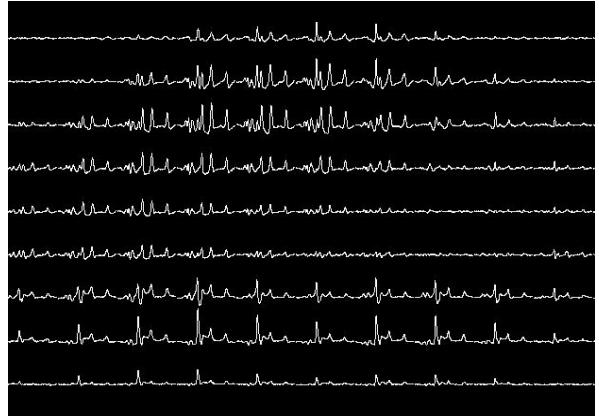


Figure 2: ^{31}P spectroscopic data obtained from one slice of the 3D MRSI

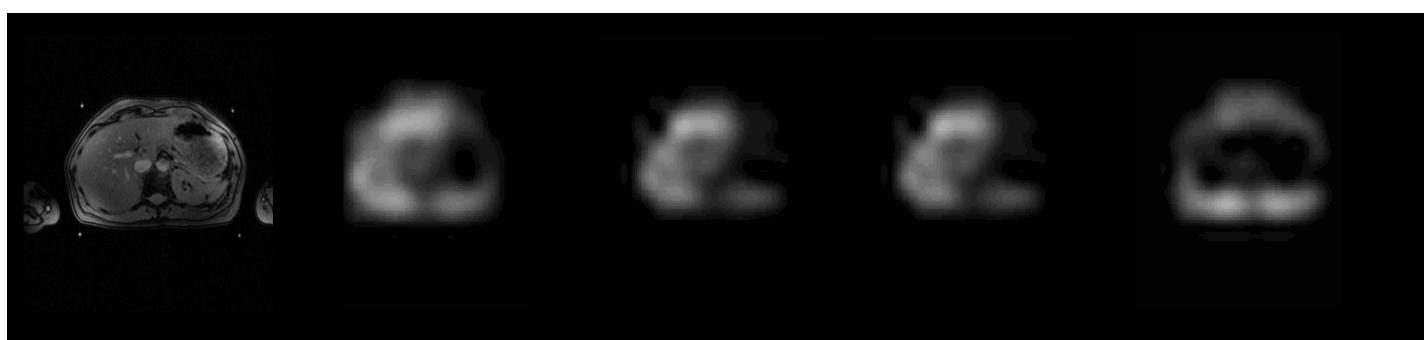


Figure 3: Metabolite Maps for β -ATP, α -ATP, γ -ATP, and Phosphocreatine