Serial proton MRS of the human brain after oral administration of ¹²C and ¹³C enriched glucose

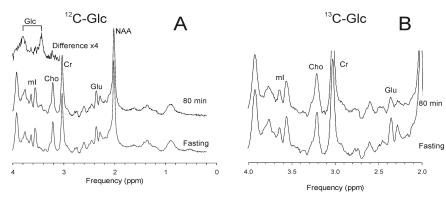
A. C. Nagasunder^{1,2}, A. Panigrahy^{1,3}, F. Boumezbeur⁴, M. D. Nelson¹, and S. Bluml^{1,2}

¹Radiology, Childrens Hospital Los Angeles, Los Angeles, CA, United States, ²Rudi Schulte Research Institute, Santa Barbara, CA, United States, ³Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States, ⁴Commissariat à l'Energie Atomique, Institute for Biomedical Imaging, Gif-sur-Yvette, Paris, France

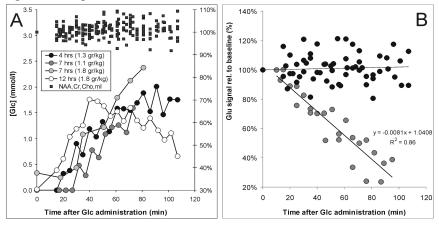
Introduction:

Recent progress in MR technology has resulted in improved reproducibility of MR spectra. The goal of this study was to demonstrate that the uptake of glucose (Glc) and its breakdown in the human brain can be monitored with standard ¹H MRS on clinical MR scanners.

Methods:


After a baseline MRS study, regular glucose (three subjects, four studies, 1.1 - 1.8 gr/kg body weight) or U-13C enriched glucose (one subject, two studies, 0.9 gr/kg) was orally administered. MR spectra were acquired up to ≈100 min after glucose administration. Subjects fasted 4-12 hours for the regular glucose studies and 12 hours overnight for ¹³C glucose studies. All studies were carried-out on a clinical MR system (Philips, Achieva 3.0T, Best, The Netherlands) using an eight-channel head coil. Single-voxel PRESS spectra (TR=2s, TE = 35ms, 128 averages, 10-15cm³⁾ of occipital grey matter (GM) and parietal white matter (WM) were acquired and fully automated LCModel software (S. Provencher Inc.) was used for processing and quantitation.

Results:


Oral ¹²C Glc administration resulted in increased tissue Glc concentrations. When ¹³C enriched Glc was used, ¹³C label replaced ¹²C and resulted in an apparent reduction of the ¹H MRS detectable breakdown products of glucose such as glutamate (Glu) (**Fig. 1, 2**).

Discussion:

The dramatically improved stability of MR systems allows the monitoring of glucose metabolism in the human brain using widely available and FDA approved proton MR spectroscopy methods. No additional hardware or special MR sequences are required. It is acknowledged that the simplicity of this approach comes at the cost of a vastly inferior

Fig. 1A: A grey matter spectrum obtained 80 min after ¹²C Glc administration showed increased Glc levels when compared with the baseline scan (small insert: difference spectrum). **B:** When ¹³C Glc was administered, ¹³C label accumulated in breakdown products of Glc, such as glutamate (Glu). Due to heteronuclear ¹³C-¹H J-coupling, intensity is spread to sidebands and ¹³C accumulation can be detected indirectly as an apparent reduction of the proton glutamate signal.

<u>Fig. 2A:</u> An increase of brain Glc was observed in all four studies using regular 12 C Glc (circles) whereas NAA, Cr, Cho, and myo-inositol (mI) did not change significantly ($102\pm4\%$ of baseline values, dark squares). **B**: In studies using U- 13 C Glc the glutamate signal decreased significantly (grey circles). Glu levels remained constant when 12 C Glc was administered (black circles). All data shown were obtained from occipital grey matter.

specificity when compared with more advanced approaches such as direct ¹³C detection, polarization transfer, and methods that employ more complex editing for indirect detection (1-4). Still, this method may be useful to answer important biological questions in clinical settings where the logistical challenges of more advanced methods cannot be overcome.

Acknowledgment:

Rudi Schulte Research Institute, Ian's Friends Foundation.

References:

1. Gruetter R, Novotny EJ, Boulware SD, et al. Journal of Neurochemistry. 1994;63(4):1377-1385. 2. Rothman DL, Behar KL, Hetherington HP, et al. Proc Natl Acad Sci U S A. 1985;82:1633-1637. 3. Gruetter R, Adriany G, Merkle H, Andersen PM. Magnetic Resonance in Medicine. 1996;36(5):659-664. 4. 1. Blüml S, Moreno A, Hwang J, Ross B. NMR Biomed. Feb 2001;14(1):19-32.