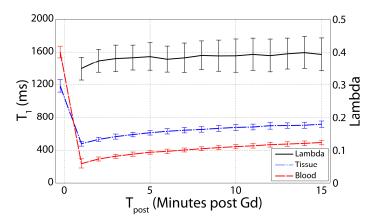
Characterization of myocardial T₁ and partition coefficient as a function of time after gadolinium delivery in healthy subjects

K. Chow¹, J. Flewitt², J. Green³, M. Friedrich^{2,4}, and R. Thompson¹

¹Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada, ²Stephenson CMR Centre at the Libin Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Alberta, Canada, ³Siemens Healthcare, Calgary, Alberta, Canada, ⁴Department of Radiology, University of Calgary, Calgary, Alberta, Canada

Introduction: Diffuse myocardial fibrosis is associated with myocardial infarction¹, heart failure² and dilated cardiomyopathy³. Conventional T_1 -weighted late gadolinium enhancement (LGE) imaging highlights focal scaring in contrast to remote reference tissue, but it cannot detect global changes in T_1 associated with diffuse fibrosis. Quantitative T_1 imaging does not use reference tissue, permits assessment of diffuse fibrosis, and allows for the calculation of the blood-tissue partition coefficient (lambda), the ratio of contrast concentration in tissue divided by contrast concentration in blood. A gadolinium bolus injection followed by a continuous infusion has been proposed to establish contrast concentration equilibrium⁴, but requires additional preparation time per subject. Here, we determine blood and myocardial T_1 values as a function of time following a standard single bolus injection of contrast (t_{post}) and the resulting dependence for the blood-tissue partition coefficient on t_{post} .

Methods: Nine healthy subjects (22.0±5.5 yrs, 6 male) were imaged using a Siemens Avanto 1.5T MRI. T_1 mapping was performed on a mid-ventricular short-axis slice using a custom saturation recovery single-shot TrueFISP sequence at baseline and one-minute intervals for 15 minutes following a bolus injection of gadopentetate dimeglumine (0.1 mmol/kg). At each time point, one "no-saturation" image and nine images with varying saturation recovery times spanning the cardiac cycle (minimum 116–121 ms, maximum 400–960 ms) were acquired during a single breath-hold. Imaging parameters were: 70° flip angle, 1.27–1.33 ms echo time, 108×192 matrix, $(262-300)\times(350-400)$ mm field of view, $(1.8-2.0)\times(1.8-2.0)$ mm resolution, 10 mm slice thickness. The myocardium was divided into 18 segments and mean signal intensities were fitted to a 3 parameter saturation recovery curve to determine T_1 values for each segment at every time point. Blood T_1 values were computed using a region of interest within the left ventricular cavity and lambda (λ) was derived using:


lambda (
$$\lambda$$
) was derived using:
$$\lambda = \frac{R_1(myocardium_{post}) - R_1(myocardium_{pre})}{R_1(blood_{post}) - R_1(blood_{pre})} \text{ , where } R_1 = 1/T_1$$

Results: Figure 1 shows myocardial T_1 , blood T_1 , and lambda values averaged over all segments and subjects as a function of t_{post} . At 15 min t_{post} , average myocardial T_1 was 719.1±38.1 ms and lambda was 0.393±0.050. Average withinsubject standard deviations of T_1 and lambda for t_{post} from 3–15 min were 34.1 ms and 0.046 respectively. Linear regression for lambda and t_{post} (3–15 min) shows an increase in lambda of 0.001 min⁻¹ (R^2 =0.75). Quantitative T_1 imaging is likely to be added to a clinical protocol following LGE imaging (t_{post} 10–15 min), where T_1 values increase by 5.9±1.6% and lambda increase by 1.1±2.7%. Derived lambda is smaller than values previously reported using a continuous injection technique⁴, likely reflecting a systematic underestimation of the true lambda. However, the technique presented here shows minimal changes in lambda over t_{post} with no changes to current practices of gadolinium injection.

<u>Conclusion</u>: Saturation recovery SSFP T_1 mapping can be performed in a single breath-hold with derived blood-tissue partition coefficient (lambda) values in good agreement with previous measurements with single bolus contrast³. In the post-LGE window of 10-15 min after contrast bolus, derived lambda values show less time dependence than myocardial T_1 .

References:

¹Flacke SJ *et al*. Radiol 2001;**218**:703-710

Figure 1. T₁ (myocardium, blood) and lamba following contrast injection.

²Iles L *et al*. J Am Coll Cardiol 2008;**52**:1574-80

³Jerosch-Herold M *et al.* Am J Physiol Heart Circ Physiol 2008;**295**:H1234-H1242

⁴Flett AS *et al*. Circulation 2010;**122**:138-144