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Introduction: The acquisition of high-resolution T1 maps in a clinically feasible time frame has been demonstrated with Driven Equilibrium Single Pulse 
Observation of T1 (DESPOT1) [1-3]. DESPOT1 derives the longitudinal relaxation time, T1, from two or more spoiled gradient recalled echo (SPGR) 
images acquired with a constant TR and different flip angles [2, 3]. In general, T1 can be estimated from two or more SPGR images [2, 3]. Estimation of 
MR parameters (T1, M0, etc.) from these sequences is challenging and susceptible to the level of noise in signal acquisition [2, 3]. Methods such as 
Simplex Optimization, Weighted Non-Linear Least Squares (WNLS), Linear Least Square (Gupta’s LLS or GLLS), and Intensity based Linear Least 
Square (ILLS) method have been employed to estimate T1 [2-6]. In both linear and non-linear methods, the estimated T1 values are dependent on 
defining the weighting factors, which may result in a biased estimate of T1 [3-6].  Herein, an adaptive neural network (ANN) is introduced, trained and 
evaluated as a T1 estimator from the SPGR signal. The ANN was trained using an analytical model of the SPGR signal in the presence of different levels 
of signal to noise ratio (SNR). Receiver Operator Characteristic (ROC) analysis with K-fold cross-validation (KFCV) were employed for training, testing, 
and network optimization. 
 
Materials and Methods: We hypothesized that an ANN could be trained to 
directly estimate T1 for a simulated signal generated by a DESPOT1 pulse 
sequence. For training, the SPGR signal constructed using a wide range of T1 
values (10ms to 3000ms) from its analytical equation (Equation 1) was used. 
The Gold Standard for the ANN training was the T1-value of the simulated 
signal. In the experiment, the measured SPGR signal intensity, S(i), is a 
function of the longitudinal relaxation time (T1), repetition time (TR), the flip angle 
(θ), and the equilibrium longitudinal magnetization, (M0). For each T1 value, 
SPGR signal inputs were generated by varying the other independent 
parameters (T2*, M0 etc) in the synthetic model of the signal [3], Gaussian noise 
with an SNR range of 2 to 30 was added to all simulated signals. The simulated 
signals were then input to the ANN and their T1 values were used as the ANN 
training output. To assess the ANN’s accuracy for analysis of the experimental 
SPGR data, the model-trained ANN was applied to SPGR sequences acquired 
from eight patients with 16 slices each (3T, Matrix size: 256X256, FOV=240 
cm2, TR=5.834 ms, TE=0.888 ms). The same data was analyzed using 
conventional methods (Simplex, WNLS, and GLLS) and the results were 
compared to that of the ANN. Using simulated SPGR signals (Eq. 1), a feed-
forward multilayer perceptron (MLP) with a back propagation training algorithm 
was trained and tested to estimate T1. The ANN was trained using a gain 
insensitive input set (μk) described as Equation 2. The input vectors are 
presented to the ANN, and the output result is compared to the class identifier 
(i.e., the value of T1 in SPGR simulation).  To quantify the accuracy and 
performance of the trained ANN compared to conventional techniques (WNLS, 
GLLS, and Simplex), the Percentage of Average Error of Estimation (PAEE) 
was calculated for each technique over a wide range of SNRs (2 to 30). The 
PAEE value is the measure of under or over-estimation of the trained ANN. 
Equation 3 was used to calculate the PAEE for each technique for different 
values of T1 (1 to 3000 ms with 1ms interval) with different SNRs.  In Eq. 3, T1E 
denotes the T1 estimated by the trained ANN and T1A the actual T1 value and H 
is the maximum number of T1 samples in the simulation (H=2000, with 1 ms 
interval). Finally, to check the accuracy of the trained ANN, the ANN and the 
conventional methods were all applied to an experimental MR data set of eight patients and the T1 values of different areas of the brain in the estimated 
T1 maps were calculated and compared (see Table-1). 
Results and Discussion: The ANN was trained with a stopping error of 0.013, learning rate of 0.01 and momentum of ~0. Figure 1 shows the PAEE 
curves for the trained ANN, Simplex, WNLS, and GLLS versus SNR, and demonstrates that the average estimation error for T1 by the ANN is about 7% 
to 4% for SNR of 10 to 15. The PAEE changes from 9% to 7% for the WNLS, 10% to 8% for the Simplex, and 13% to 12% for the GLLS. This figure also 
illustrates an example of a T1 map estimated by the model-trained ANN, and all other techniques. As shown in Table-1 and Figure-1, the model-trained 
ANN estimates the T1 map accurately and in a stable manner. To evaluate the accuracy of the model-trained ANN against real data, experimental 
results of the ANN for different areas of the brain in eight patients were also compared to the results of the conventional methods (Simplex, WNLS, 
GLLS and values reported in the literature- see Table-1); ANN and conventional methods yielded highly correlated estimates of T1, independent of tissue 
type. For the trained ANN, the number of operations needed to produce a single T1 value from one SPGR signal is about 20 (for an ANN with 5:3:1). 
This is much shorter than the many thousands of operations required in the iterative and multi-dimensional Simplex method.  A map of T1 with a 
dimension of 256X256 can be estimated by the ANN in a few seconds, whereas the time required for creating the same map using the simplex, GLS and 
WILS methods is roughly around 5, 2  and 2 minutes respectively. 
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