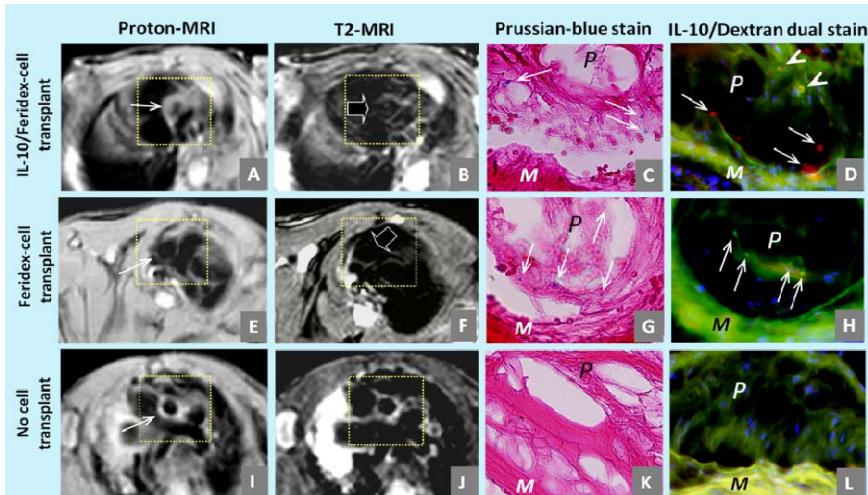


MRI of Bone Marrow Cell-Mediated Interleukin-10 Gene Therapy of Atherosclerosis

J. Sun^{1,2}, X. Li¹, H. Feng¹, H. Gu¹, T. Blair¹, J. Li¹, Y. Meng¹, F. Zhang¹, and X. Yang^{1,2}


¹Image-Guided Bio-Molecular Interventions Section, Radiology, University of Washington School of Medicine, Seattle, WA, United States, ²Radiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, People's Republic of

Objectives: Recent studies have demonstrated that atherosclerosis can recruit circulating bone marrow cells (BMC)(1), and the migration of BMCs to atherosclerotic lesions can be monitored, *in vivo*, by molecular magnetic resonance imaging (MRI)(2). The aim of this study was to evaluate the feasibility of using MRI to monitor interleukin-10 (IL10) gene-transfected BMCs migrated to atherosclerosis for preventing progression of plaques.

Methods: For *in vitro* confirmation, BMCs were extracted from donor mice and then transduced by IL10 cDNA-lentivirus. The IL10-BMCs were labeled with a T2-MR contrast agent (Feridex). Success of simultaneous IL-10 gene transduction and Feridex-labeling of BMCs was confirmed by cytologic staining for IL10-gene expression and intracellular iron particle localization. For *in vivo* validation, atherosclerotic ApoE^{-/-} recipient mice were intravenously transplanted with IL10/Feridex-BMCs (Group I, n=5) or Feridex-BMCs (Group II, n=5), while a group of five atherosclerotic ApoE^{-/-} mice was not transplanted with BMCs to serve as a control (Group III). Approximately four weeks later, the migration of IL10/Feridex-BMCs and Feridex-BMCs to aortic atherosclerotic lesions of ApoE^{-/-} mice was monitored, *in vivo*, with 3.0T MR imaging using a Philips mouse coil. All aortic tissues were then harvested for subsequent histological correlation and confirmation. To evaluate the therapeutic effect of BMC-mediated IL10 gene therapy in preventing the progression of atherosclerotic plaques, we measured quantitatively the normalized wall index (NWI) of ascending aorta of recipient ApoE^{-/-} mice using a formula of dividing the aortic wall area by the total aortic area at cross-sectional views of digitized microscopic images. Subsequently, we statistically compared the mean NWIs among the three mouse groups with different treatments (one-way ANOVA).

Results: Of *in vitro* experiments, the success of simultaneous lentivirus-IL10/Feridex transduction/labeling of BMCs were confirmed by cytologic staining. Of *in vivo* experiments, molecular T2-MRI of the animal group I and group II presented signal voids of the aortic walls due to Feridex-created artifacts from the migrated IL10- and/or Feridex-BMCs in atherosclerotic lesions, which were confirmed by histological staining as Feridex- and/or IL10-positive cells. These findings were not seen in the control group III (Figure 1). Histologic quantitative measurements showed that the mean NWI of group I was significantly lower than those of group II and group III ($P<.05$), while there was no significant difference on the mean NWIs between the study group II and group III (Figure 2).

Conclusion: This study demonstrates that it is possible to use *in vivo* MRI to track IL10/Feridex-BMCs recruited to atherosclerotic lesions, where IL10 genes potentially function to prevent the progression of atherosclerotic lesions. This technique may open a new avenue for treatment of atherosclerotic cardiovascular diseases using MR-integrated, BMC-mediated IL-10 gene therapy.

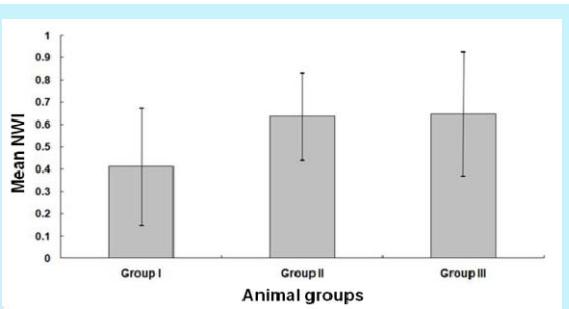


Figure 1. Representative MRI-histologic correlation of atherosclerotic ascending aorta (insets) of ApoE mice with IL10/Feridex-BMC transplantation (A-D), Feridex-BMC transplantation (E-H) and with no cell transplantation as a control (I-L). (A, E&I) Proton-weighted MRI shows thickening of the aortic walls due to formation of atherosclerosis lesions (arrows on A, E&I). (B, F&J) T2-weighted MRI shows MR signal void (arrows on B&F) at the aortic walls with IL10 and/or Feridex-BMC transplantation, which is not seen in the control aorta (J). (C, G&K) Prussian-blue staining detects Feridex-positive BMCs migrated to the atherosclerotic aortic wall (arrows in C&G), which are not visualized in the control aortic wall (K). (D, H&L) Immunofluorescent dual staining confirms simultaneous IL-10 gene expression (as red-colored spots, arrows on D), IL-10 overlapped with dextran shells of Feridex particles (as orange-colored dots, arrowheads on D) and dextran shells of Feridex particles (as green-colored dots, arrows on H), which are not seen in the control aortic wall (L), 400X. P=atherosclerotic plaque; M=medial. Blue color indicates nuclei.

Acknowledgement: This study was supported by a NIH R01 HL078672 grant.

Reference

1. Sata M. Trends Cardiovasc Med 2003;13:249-253.
2. Qiu B, Yang X. Nature CPCM 2008;5:396-404.

Figure 2. Comparison of normalized wall index (NWI) of ascending aortas of ApoE^{-/-} mice among group I with IL10/Feridex-BMC transplantation, group II with Feridex-BMC transplantation, and group III with no cell transplantation. The mean NWI of group I is significantly lower than those of group II and group III ($P<.05$), while there is no significant difference between group II and group III.