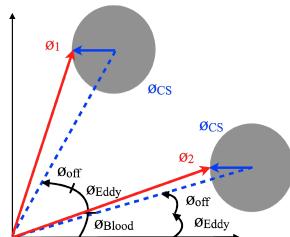


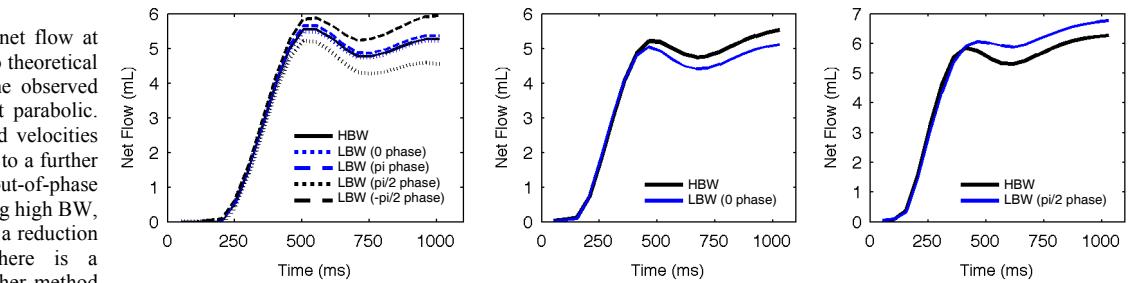
THE EFFECTS OF CHEMICALLY SHIFTED PERIVASCULAR FAT IN QUANTITATIVE PHASE CONTRAST MRI


M. J. Middione^{1,2}, A. N. Moghadam^{1,3}, Y. Natsuaki⁴, and D. B. Ennis^{1,2}

¹Department of Radiological Sciences, Diagnostic Cardiovascular Imaging Section, University of California, Los Angeles, CA, United States, ²Biomedical Physics Interdepartmental Program, University of California, Los Angeles, CA, United States, ³Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, ⁴Siemens Medical Solutions, Malvern, PA, United States

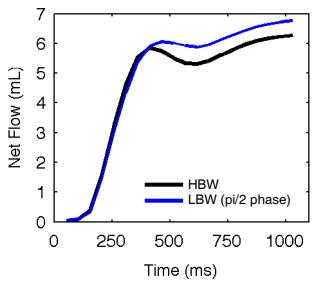
Introduction: Phase Contrast MRI (PC-MRI) is a routine clinical noninvasive imaging technique used to measure the velocity of blood with flexible spatial and temporal resolution [1,2]. Despite recent advances, improvements in PC-MRI accuracy are still needed. Phase measurements in MRI are subject to quantitative inaccuracy due to eddy currents [3], gradient field distortions [4], Maxwell terms [5] and chemical shift [6]. Perivascular fat can chemically shift across the vessel wall and into the lumen, thereby leading to over or underestimation of blood velocity within a vessel. The **objective** of this study was to describe the effect of the readout bandwidth (BW) and echo time (TE) on chemically shifted perivascular fat in quantitative PC-MRI using computer simulations, flow phantom data and *in vivo* studies.

Fig. 1. Fat chemically shifts to the right, less so at high (left column) compared to low (right column) BWs for different protocols (A. No fat, B. Fat at our clinical protocol, C. Fat at low resolution).


Fig. 2. Chemical shift in PC-MRI. BW scales the radius of the gray circle (magnitude of the chemical shift contribution) while the TE determines the phase.

Discussion: The overestimation of net flow at low BW *in vivo* (Fig. 4) compared to theoretical results (Fig. 3) can be attributed to the observed flow profile *in vivo*, which was not parabolic. Pixels near the vessel wall exhibited velocities that were not near zero, thus leading to a further increase in the net phase due to the out-of-phase TE. The effects are mitigated by using high BW, which requires less scan time due to a reduction in the available TE/TR, but there is a concomitant decrease in SNR. Another method for eliminating the shift of perivascular fat into the vessel is to increase the spatial resolution, but this comes at the expense of increased scan duration and breath-hold times, which can be problematic for thoracic and abdominal vessel imaging.

The spatial resolution/wall thickness used in this study was comparable to current clinical protocols. Fat/water separated imaging techniques or fat saturation pulses can eliminate the chemical shift effects of fat at the cost of additional scan time or measurements. The femoral artery was chosen for *in vivo* studies to increase the reproducibility of the analysis between multiple scans and to obviate the need for respiratory gating.


Conclusions: The BW controls the magnitude of the spatial shift of perivascular fat into the vessel and affects the accuracy of quantitative blood flow measurements. High BWs reduce, or eliminate (depending on vessel characteristics and imaging resolution), the spatial shift of perivascular fat into the vessel and increase the accuracy of quantitative blood flow measurements. The TE controls the direction in which fat corrupts PC-MRI measurements. For parabolic laminar flow, mid TEs ($\pi/2$ and $-\pi/2$) are most detrimental to quantitative PC-MRI measurements as they are oriented perpendicular to the phase of slow flowing blood near the vessel wall.

References: 1. N.J. Pelc, *Magn Reson Imaging Clin N Am* **3**, 1995. 2. J. Lotz, *Radiographics* **22**, 2002. 3. A. Chernobelsky, *J Cardiovasc Magn Reson* **9**, 2007. 4. M. Markl, *Magn Reson Med* **50**, 2003. 5. M.A. Bernstein, *Magn Reson Med* **39**, 1988. 6. M.A. Bernstein, *J Magn Reson Imaging* **1**, 1991. 7. J.H. Gao, *Med Phys* **15**, 1988.

Fig. 3. Simulation results showing the role of TE on chemical shift induced artifacts for net flow.

Fig. 4. *In vivo* results (in-phase TE). The use of a low bandwidth leads to an underestimation in net flow of 0.41 mL (7.7 %).

Fig. 5. *In vivo* results ($\pi/2$ phase TE). The use of a low bandwidth leads to an overestimation in net flow of 0.49 mL (7.5 %).