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Introduction While cardiac MR has proven its unique value as an important non-invasive modality to evaluate heart disease, the majority of cardiac MR studies still
rely on breath-held, segmented k-space, data acquisition. Unfortunately, breath holding is particularly difficult for patients with severe heart disease or for
uncooperative pediatric patients. Real-time and single-shot cardiac imaging is therefore of high clinical relevance; however, these techniques, if compared to breath-
held ones, must compromise spatial and/or temporal resolution or sacrifice SNR despite the broad use of parallel imaging and rapid imaging sequences [1]. Recent work
has shown that SNR can be improved by selectively averaging motion-corrected free-breathing images using the non-rigid image registration. Substantial SNR gains
have been reported for high spatial-temporal cardiac cine [1,2], high SNR free-breathing single-shot delayed enhancement imaging [3] and free-breathing single-shot
fat-water separated cardiac imaging [4]. All of these studies rely on retrospectively applying image registration to correct the heart motion across multiple heart beats.
The corrected images are then combined via the simple uniform averaging to suppress noise. To avoid any significant artifacts introduced by imperfect non-rigid motion
correction, all previous studies have applied heuristic criteria to exclude some frames from the final averaging. On the other hand, non-rigid image registration, viewed
as an optimization process to find local optima, can lead to variable correction accuracy for both different frames and different regions within a frame. Uniformly
averaging multiple motion-corrected frames likely will lead to suboptimal outputs, as all pixels in the corrected frames are weighted equally without considering the
registration accuracies. Also, the exclusion of frames lowers the possible SNR gains which can be obtained by including more frames for image combination. A novel
image combination algorithm is therefore proposed to compute optimal weights for every pixel after the motion correction. In this formulation, the quality of motion
correction will influence outputs by minimizing the total amount of non-rigid deformation brought into the image combination. The optimal weights calculation is
formulated as an energy minimization problem and solved efficiently under the variational framework.

Optimal Image Combination As the quality of non-rigid registration is not uniform across different frames or between different regions within a frame, the
deformation fields, as the outputs of non-rigid registration process, carry the information of accuracy of motion correction. Often large deformation is more related to
visible smearing artifacts introduced by motion correction. Given a group of N frames I(x,y,t),t = 0,1,2, ..., N as a free-breathing cardiac MR dataset, the optimal
weight is defined as a function w(x,y,t),t = 0,1,2, ..., N to minimize the following energy functional: w(x,y, t) = min,, f(w, deform) where f(w, deform) is
defined as:
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f(w,deform) & f(w(x, y,t),deform(x,y, t)) = [ll, [wz(x,y, t) - |deform(x,y, )| + - |Vw(x,y,0)|* + B - (w(x,y, t) —%) ]dxdydt

The first term penalizes the large deformation, which minimizes the total amount of deformation brought into the image combination. The second term is the

regularizer. The third term is to keep the weighting to be close to the uniform averaging which is statistically optimal for identically distributed (IID) random additive

noise. The above-defined energy function can be minimized by solving the following Euler equation: p - V2w(x,y,t) — (|deform(x, Y, t)| + B) w(x,y,t) + % =0

Here V2w(x, y,t) is the Laplace operator derived from the regularization item. Note this Euler equation belongs to the generalized diffusion equation, meaning the

convergence of its solver is theoretically guaranteed if the iteration step is sufficient small. This method has been implemented as a self-contained software component

and integrated into the reconstruction software of MR scanners. The computational time is typically ~1s. To perform the motion correction, a fast non-rigid registration
algorithm [5] is applied here with localized cross correlation as the cost function.

Experiment and Results The performance of proposed method was tested on free-breathing
fat-water imaging. In this experiment, a free-breathing, single shot fat-water separated imaging
protocol was developed using parallel imaging acceleration. The details of imaging sequence and
fat-water separation method can be found in [3]. A total of 7 volunteers were scanned using this
sequence and each scan included 8 repetitions of two echoes, which led to 8 water and 8 fat images
after fat-water separation. For every dataset, a key/reference frame is first selected by searching for
the minimal mean square error to all other frames on the water+fat images. The motion correction Fig- 1. An illustration of MTD combination. From left to right, the single
is then applied to both water and fat images. Every frame except the reference is registered to the shot water image; 50% combination, 100% combination and MTD output.

key frame and the resulting deformation fields serve as inputs to estimate the optimal
weighting functions. Fig. 1 illustrates the superior performance of MTD combination. First,
if compared to the result of 50% combination with 4 frames excluded from averaging, the
MTD output shows better noise suppression. Second, although the 100% combination image
shows the similar SNR to the MTD image, the latter leads to less smearing artifacts
introduced by motion correction. When the performance of registration is less satisfied, the

; ) o . oo N . Fig. 2. An illustration of smearing artifacts introduced by imperfect motion
smearing artifacts can even be visible in the 50% combination image, while the MTD  correction. From left to right, the single-shot water image; 50% combination, 100%

strategy effectively suppressed these artifacts (Fig. 2). To quantify the effects of noise combination and MTD image.
suppression, a retrospective noise variance estimation algorithm based on Karhunen-Loeve
transform and Marcenko-Pastur distribution [6] is applied to the original images and

Table 1. Estimated normalized noise variances for water/fat imaging.

50%/100%/MTD combined images. For the comparison purpose, all noise variances are Or igénal 0% 1009 MTD
normalized against the corresponding key-frame. Table 1 summarizes the results. The noise water 1'0 0.206£0.081 0.15940.058 0.18010.066
suppression of MTD is comparable to 100% averaging and better than 50% combination and its Jat - 0.33440.135  022140.073 _ 0.232140.044

gain is further supported by less visible motion-correction artifacts.

Conclusion A novel image combination algorithm is proposed to perform retrospective noise suppression for the free-breathing cardiac MR imaging via the
estimation of optimal weights with the minimal total deformation constraint. Compared to the simple uniform averaging used in previous studies, this approach achieves
good noise suppression and provides better tolerance to artifacts possibly introduced by imperfect motion correction. This method is fully automated and
computationally efficient mainly attributing to its variational formulations. While its performance was demonstrated here on free-breathing fat-water imaging, potential
applications of this technique can be easily extended to other free-breathing cardiac imaging applications, because the estimation of MTD weighting function does not
rely on any particular imaging contrast or specific sequence features.
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