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Introduction 

  Amide-proton-transfer MRI has recently emerged as a new molecular-MRI technique in which the contrast is determined by a change in water 
intensity due to chemical exchange with saturated amide protons in protein backbones [1, 2]. This study is to evaluate whether APT-MRI can 
improve prostate cancer detection in addition to DCE-MRI. 
Material and methods 

Subjects Twelve patients with prostate cancer scheduled for prostatectomy were 
evaluated in the retrospective study. The mean age of the patients was 58.5 years (range, 
47-68 years). 

APT-MRI All patients were imaged on a 3 Tesla MR system (Achieva, Philips 
Healthcare, Cleveland, OH) using a 32-channel phased array coil. APT-MR imaging was 
based on single-slice single-shot TSE. The saturation pre-pulse was composed of a train 
of sixteen 1800º block pulses, each with a pulse length of 31 ms and saturation amplitude 
of 161.3 Hz (3.8 µT). Magnetization transfer spectra with 33 different frequency offsets (-
8 to 8 ppm, interval 0.5 ppm) were acquired in three transverse slices at the apex, middle, 
and base section of the prostate. 

DCE-MRI DCE-MRI was performed using a 3D T1-weighted fast field echo 
sequence in the axial plane with a temporal resolution of 10.7 sec/volume. The 
extracellular Gd-based contrast agent was intravenously injected (injection dose = 0.1 
mmol/kg bodyweight, injection rate = 0.5 ml/sec) followed by a 20 ml saline flush at a 
rate of 2 ml/sec. 

Image Processing After field inhomogeneity correction, APT-MR imaging was 
quantified using the APT ratio (APTR), which is associated with the magnetization 
transfer ratio asymmetry at 3.5 ppm. For DCE-MRI data analysis, regions of interest 
(ROIs) were drawn on tumor and benign peripheral zone (PZ) tissues. Tofts and Kermode 
pharmacokinetic model was used to fit the data on a pixel-by-pixel basis as well as the 
ROIs. Ktrans (min-1) and kep (min-1) were calculated. The cutoff value was defined as the 
average of benign PZ tissue plus one standard deviation and used to differentiate tumor 
from benign PZ tissue. 
Results 

DCE-MRI was acquired in eleven out of twelve patients due to one patient (Patient F) 
allergic to Gd-based agent. Ktrans was 0.50 ± 0.23 min-1 in tumor and 0.27 ± 0.16 min-1 in 
benign PZ (P = 0.02); and kep was 1.08 ± 0.36 min-1 in tumor and 0.56 ± 0.25 min-1 in 
beingn PZ (P = 0.001). APTR in prostate cancer ROIs was 5.8% ± 3.2%, significantly 
higher than that in the peripheral zone benign regions (0.3% ± 3.2%, p = 0.006; Figure 1). 
Using the cutoff value of Ktrans (0.43 min-1) and kep (0.71 min-1), tumor and benign PZ 
cannot be discriminated in 3 cases (Patient D, I and K). The cutoff value of APTR (3.4%) 
can be used to differentiate tumor from benign PZ regions in the 3 cases and Patient F 
without DCE-MRI. 
Discussions and Conclusion 

APT-MR imaging provides unique information about the presence of prostate cancer 
based on increased cellular content of mobile proteins, which is complementary to DCE-
MRI. Patient with impaired renal function is not uncommon in prostate cancer disease. 
APT-MRI can detect prostate cancer without injection of a contrast agent in order to 
improve the diagnostic ability of MRI. In conclusion, APT-MRI is capable to improve 
cancer detection in addition to microcirculation imaging. 
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Figure 1. Histograms of Ktrans, kep and APTR. By 
defining the cutoff value as 0.7 min-1 for kep, tumor 
and benign PZ cannot be discriminated in 3 cases 
(Patient D, I and K marked with ≠). No DCE-MRI 
was acquired in Patient F due to allergic to Gd-based 
agent. By defining APTR cutoff value of 3.4%, 
tumor and benign PZ regions in the 4 cases can be 
discriminated. 
 
Figure 2. Patient K with a tumor in the left PZ. 
Tumor cannot be differentiated from benign PZ in 
Ktrans and kep maps. APT-MRI shows higher APTR 
value in tumor than in benign PZ.  
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