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Introduction  
We apply a new variational Bayesian factor partition (VBFP) method to the sparse spatiotemporal decomposition of resting state fMRI data. The 
VBFP method estimates sources with sparse distributions in both spatial and temporal domains and incorporates automatic relevance determination in 
a fully Bayesian inference framework. Hence it achieves dimension reduction as an integrated part of the inference. We apply VBFP to resting state 
fMRI data and compare it with a maximum likelihood independent component analysis (ICA) algorithm [Bell and Sejnowski, 1995] and show that 
VBFP identifies similar functionally coherent brain networks and their temporal fluctuations. The potential advantages of VBFP on the integrated 
inference of the noise model and on robustness for small sample sizes motivate further investigation.  
 
Methods 
Image acquisition: Ten healthy young adult subjects were studied on a 3T Signa EXCITE MR scanner (GE Healthcare, Waukesha, WI) using an 8-
channel phased-array radiofrequency head coil. BOLD fMRI images of the supratentorial brain were obtained using a 2D multislice gradient echo 
echoplanar acquisition with FOV 22x22 cm, 64x64 matrix, 4 mm interleaved slices with no gaps, and TR of 2 sec and TE of 28 sec.  After 10 dummy 
brain volume scans to reach equilibrium magnetization, two hundred (T=200) brain volumes were collected over a period of 7 minutes with eyes 
closed to minimize exogenous visual activation. ASSET parallel imaging with a reduction factor of 2 was used to reduce the distortion.  
Preprocessing: (a) Motion correction was applied to fMRI volume data by registering each scanned volume data with the median volume using the 
MCFLIRT function in FSL (http://www.fmrib.ox.ac.uk/fsl). (b) In-brain voxels were extracted by the BET function in FSL. (c) Spatial smoothing was 
applied by convolving each scanned volume with an 8x8x8mm Gaussian kernel, using the “fslmath” function in FSL. (d) Temporal filtering was 
applied to each voxel time sequence by regressing out the linear trend and performing temporal smoothing using a Gaussian kernel with σ  = 2.8 sec. 
Data analysis: (a) The global baseline (i.e., the grand mean of the dataset), the global spatial map (i.e., the mean of time sequence at each voxel), and 
the global time course (i.e., the mean of in-brain volume at each time point) were removed from the dataset. (b) ICA and VBFP were applied to the 
fMRI data to achieve a spatiotemporal decomposition as Y = AHX  where Y is the TxN spatiotemporal fMRI data matrix with N in-brain voxels in 
each row and T time points. For ICA, “A” contains the eigenvectors obtained by principal component analysis and “H” is the lower dimensional 
mixing matrix estimated by the Information maximization (Infomax) algorithm to maximize statistical independence of the sources in X [Bell and 
Sejnowski, 1998]. For VBFP, “A” contains temporally sparse sources in its column, “X” contains spatially sparse sources in its row, and “H” is a low-
dimensional non-sparse mixing matrix. For fMRI analysis, the spatial and temporal sources can be constructed in two different ways from the above 
decomposition. (i) “X” is output as the set of decomposed spatial activation maps, correspondingly, the matrix product of “AH” is deemed to be the 
time course matrix containing the temporal fluctuations of the sources in X. (ii) “A” is output as the sparse temporal response sequences and the 
matrix product “HX” is deemed to be the activation maps. In this work, scheme (i) is adopted for the correspondence between statistical independence 
(achieved by Infomax) and sparsity (achieved by VBFP) in the spatial domain. A total of thirty components were estimated using both algorithms. The 
spatial sources were normalized to unit variance and thresholded at 1.5 standard deviations with the supra-threshold voxels displayed on the brain 
anatomy. The estimated spatial maps between ICA and VBFP are matched by the overlap between the activation regions.   
 

 

Results 
Figure 1 shows two pairs of connectivity maps and their time courses 
estimated by ICA (top) and VBFP (bottom), as these results are 
representative to characterize the difference between the two 
algorithms. It can be observed that (i) both algorithms identify similar 
suprathreshold regions during the resting state and capture similar 
temporal fluctuations of those regions. (ii) VBFP tends to include both 
positive (red) and negative (blue) regions in the same connectivity 
maps, indicating anti-correlated networks. On the other hand, ICA 
estimates maps are less inclusive of both positive and negative regions, 
thus showing only the positively correlated brain networks.  
 
Figure 1.  (a) Connectivity of bilateral posterior cingulate gyri during the 
resting state and their time course.  The top panel shows the results of Infomax 
ICA and the bottom panel shows the results of VBFP, which includes anti-
correlation with a parietal lobe network. (b) Connectivity of bilateral superior 
parietal lobes and their time course. The top panel shows results of Infomax 
ICA and the bottom panel shows results of VBFP. The VBFP map includes 
more anti-correlated networks in the bilateral posterior parietal and lateral 
occipital regions. 

Discussion 
Since ICA assumes a noiseless mixing model, a dimension reduction has to be applied to separate the noise subspace from the signal subspace before 
estimation of statistically independent sources.  This is in order to avoid overfitting of the independent component decomposition model. In VBFP, 
since the noise is incorporated as part of the model, dimension reduction becomes an integrated part of the inference. VBFP is developed based on the 
sparsity assumption in both spatial and temporal domains; a similar idea was proposed in [Stone, et al., 2000] where the estimation is achieved by a 
heuristic coupling between the spatial and temporal mixing matrices. In contrast, VBFP achieves the spatiotemporal decomposition through a fully 
Bayesian inference. 
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