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Introduction: Time-resolved CE-MRA provides contrast dynamics in the vasculature. The 
temporal information can be further used to separate arteries from veins using a variety of 
algorithms such as correlation analysis (1), matched filtering (2), eigenimage filtering (3), feature 
space analysis (4), or Mahalanobis distance analysis (5). The ability to separate arteries from veins 
allows extended acquisition at the steady state as well as matched filtering of the whole data to 
improve both spatial resolution and signal to noise ratio (SNR). However, most of the 
segmentation algorithms require operator intervention such as thresholding. Improper thresholding 
may significantly reduce the image quality. Furthermore, the contrast dynamics pattern may vary 
significantly within a large coronal imaging field of view (FOV) due to delayed or asymmetric 
filling, or slow blood flow in the tortuous vessels (6). Correlation with single arterial and/or 
venous reference curves may result in misclassification. A single global thresholding of the 
correlation coefficients or Mahalanobis distance may not work well. Here we present a fully 
automated region-specific segmentation algorithm for effective separation of arteries from veins 
based on cross correlation and pooled covariance matrix analysis.  
METHODS: The fully automated vessel segmentation algorithm shown in Figure 1 includes the 
following five steps: (i) Automated region-specific regions of interest (ROIs) for artery, vein and 
background are generated using an iterative thresholding algorithm based on the contrast arrival 
time map and contrast enhancement map. (ii) Region-specific matched filtering is performed for 
each region to optimize SNR for artery and vein, respectively. (iii) Region-specific cross 
correlation (CCj

k,REF) is performed for each voxel k from region j by correlating 
its time course to the arterial (A), venous (V) and background (B) reference 
curves, respectively. (iv) Region-specific pooled covariance matrix analysis is 
performed in the 3D feature space, where each voxel k from region j forms a 
cross correlation vector CCj

k = (CCj
k,A, CCj

k,V, CCj
k,B). The mean correlation 

vector for region j is denoted as mj. A 3×3 variance matrix Ωj for region j is 
given by equation [1] where NREF is the size of ROI. Pooled sample covariance 
matrix for region j, Ωj(P) is the normalization of multiple-feature covariance 
matrix. Automated processing is performed by calculating the Mahalanobis 
distance (MD), which is a statistical distance measurement that accounts for the 
widths of the reference correlation coefficients distributions of each voxel 
relative to the arterial, venous and background peaks. The pooled MD of voxel k 
from region j relative to each feature is estimated using equation [2]. Voxel k is 
automatically allocated to the group with the smallest MD. (v) Formation of the 
composite images where the segmented low resolution dynamic image data are 
combined with the unsegmented matched filtered high resolution data in k-space 

and inverse Fourier transformed back to form the final 
segmented arterial and venous images. This algorithm was 
applied to 7 volunteer and patient studies acquired with a 
PR-HyerTRICKS sequence with a FOV of 44 cm, readout 
matrix of 512, 72 slices, slice thickness of 1.0 mm, 
TR/TE/flip angle = 7.4 ms/2.6 ms/30°. The total acquisition 
time was 3 min 58 seconds during which 24 time frames 
were acquired, with the first 82 seconds for mask data 
acquisition and the last 58 seconds for high frequency slice data acquisition. 
RESULTS: Figure 2 shows a volunteer study with region-specific matched filtering (Fig 2A) and a global correlation analysis 
(Fig 2B), as well as the automatically segmented arteriogram (Fig 2C) and venogram (Fig 2D). CNR between artery and vein is 
increased from 3.6 for the matched filtered image to 54 for the segmented angiogram and 46 for the segmented venogram. 
Figure 3 shows a patient study with matched filtering (Fig 3A) and segmented arteriogram (Fig 3B) and venogram (Fig 3C). 
CNR between artery and vein is increased from 1.8 for the matched filtered image to 24 for the segmented angiogram and 29 for 
the segmented venogram. Figure 4 shows another patient study with matched filtering (Fig 4A, B) and the segmented 
arteriogram (Fig 4C, D) in the coronal and sagittal reprojection. The measured CNR between artery and vein increased from 1.3 
for the matched filtered image to 16 for the segmented arterial image. 
CONCLUSIONS: Fully automated vessel segmentation can be applied to time-resolved CE-MRA to generate 3D angiograms 
and venograms with high spatial resolution, high SNR and CNR with minimal high frequency venous/arterial and background 
signal contamination.  
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Fig 1 Flow chart for the automated segmentation algorithm 

Fig 3 The matched filtered image (A), the segmented arterial 
image (B) and venous image (C) of a patient. 

Fig 2 The matched filtered image (A), segmented images with global ROIs (B) 
and region-specific ROIs for artery (C) and vein (D) of a volunteer.  

                                                      

Fig 4The matched filtered 
coronal (A) and sagittal (B) 
images and the segmented 
coronal (C) and sagittal (D) 
images of a patient. 
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