
Figure 1: (a) Experimental setup. (b) Schematic view of axon. (c) single cylinder representing axon
with caliber a. (d-e) 3D and 2D view of rectangular arrangement of cylinders representing axons in 
white matter fiber.
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Introduction 

We present an analytical water diffusion model for inferring axon properties using double-PGSE MRI (d-PGSE) accounting for finite gradient pulses. The MR signal 
attenuation obtained from single-PGSE (s-PGSE) reflects the underlying tissue structure that restricts the water molecules’ diffusion within. However, high q-values 
must be applied to measure these tissue properties using s-PGSE, requiring high gradient strength and/or long pulse duration and diffusion times[1]. This inhibits the 
clinical applications of these methods. We propose to use low-q d-PGSE MRI for white matter tissue structure modeling in order to extract axon properties including 
axon caliber, water diffusivity and volume fraction of intra-axonal space. 
Method 

The d-PGSE sequence is the simplest form of multi-PGSE[2] with two encoding intervals of gradients 1G and 2G  with angleψ . The two encoding intervals are 
separated by mixing time mt , diffusion time 1Δ and 2Δ , and pulse duration 1δ and 2δ . Recently, Özarslan et al.[3] predicted the dependence of signal decay from d-
PGSE sequence in confined geometries theoretically. Shemesh et al.[4] validated these dependencies of signal decay with well-controlled experimental parameters using 
water filled microcapillaries.  
Model for MRI signal 

We propose an analytical water diffusion model for estimating axon properties based on Özarslan’s theory[3] using d-PGSE data. 
The model is composed of two compartments: (1) restricted diffusion in intra-axonal compartment within the axons that are modeled 
as cylinders (2) hindered diffusion in the extra-axonal compartment outside the axon. The two compartments are denoted with 
subscript i and e, respectively. The boundary of the cylinders representing the axon myelin is assumed to be impermeable. The 
combined normalized MR signal attenuation is then: ie fEEfE +−= )1( , where f is the volume fraction of the intra-axonal 
compartment. We model the normalized MR signal attenuation in the extra-axonal compartment with Gaussian distribution: 
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αω , nα are the roots of the derivatives of the first order Bessel function 0)(' =nJ α . We 

approximated A and B  using the most important lowest 6 roots. For simplification, Δ=Δ=Δ 21 and δδδ == 21 . 
• The axon properties are axon caliber a , volume fraction of the intra-axonal compartment f , water diffusivity of intra- and extra-

axonal compartment iD and eD , and we account for the axon orientation with relative angle 1φ and 2φ  with respect to gradients 

1G and 2G .  
Experiments 

Our model was fitted into 4 diffusion experiments using Monte-Carlo random walk simulation. We used a geometric model of 
rectangular arrangement of cylinders (Fig. 1d) aligned on the z-axis (Fig. 1a) with the following axon properties as defined 
above: )](9,7,5,3,2,1[ ma μ= ; 7.0=f ; and )/(2 29

21 smeDDD −=== . We set our experimental parameters to be: )(221 ms== δδ ; 
)](110,60,40,20,10,10[21 ms=Δ=Δ ; )(3 mstm = ; and )/](3.0,3.0,5.0,5.0,5.0,5.0[max2max1 mTGG == for )](9,7,5,3,2,1[ ma μ= respectively, with SNR = 16. We held 

1G  direction constant on the x-axis and varied 2G direction on the x-y plane rangingψ from °0 to °360 with 18 increments to probe diffusion signals that are most 
sensitive to restricted diffusion (Fig. 1a).  
Results 
We used a Markov Chain Monte Carlo (MCMC) procedure to get samples of the posterior distribution of the model parameters given the data. Fig. 2 is our main 
estimation results showing the estimation-sample histograms of: (a) axon caliber a ; (b) volume fraction of the intra-axonal compartment f ; and (c) water diffusivity D . 
Each histogram combines a total number of 100 samples and the true value for each parameter is indicated with a black line. Overall, we were able to extract accurate 
estimates of these axon properties. It is worth noticing that when axon caliber gets smaller ( ma μ2≤ ), we observed an underestimation of the axon caliber dimension.  
Conclusions 

Our estimation results demonstrate the feasibility inferring axon properties using d-PGSE that utilizes signal intensity dependency on gradient-pair direction to 
compensate for high-q requirement in s-PGSE experiments. Since many gradient directions can be acquired in rather short time in the current MRI scanner, this 
approach may suggest potential for clinical in-vivo axon-property estimation. 
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(a) radius a )( mμ  

(b) volume fraction f  
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(c) Diffusivity D (m2/2) 
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Figure 2: Histogram of 100 samples 
from posterior distribution on a, f and 
D using MCMC.   
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