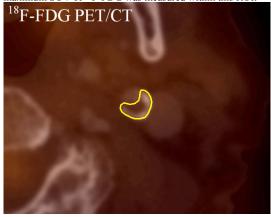
Multimodality imaging of carotid artery plaques: 18F-FDG PET, CT, and MRI

R. Kwee¹, G. Teule², R. van Oostenbrugge², W. Mess², M. Prins², R. van der Geest³, P. Hofman², J. van Engelshoven², J. Wildberger², and E. Kooi²

¹Maastricht University Medical Center, Maastricht, Limburg, Netherlands, ²Maastricht University Medical Center, ³Leiden University Medical Center


Purpose. The objective was to compare carotid plaque assessment with ¹⁸F-Fluoro-2-DeoxyGlucose Positron Emission Tomography (¹⁸F-FDG PET), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI).

Methods and Materials. Fifty patients with symptomatic carotid atherosclerosis underwent ¹⁸F-FDG PET/CT and MRI. Correlations and agreement between imaging findings were assessed by Spearman and Pearson rank correlation tests, T-tests, and Bland-Altman plots.

Results. No strong correlations were found between plaque 18 F-FDG standard uptake values (SUVs) and CT/MRI findings (Spearman ρ 's -0.088-0.385). Maximum SUV was significantly larger in plaques with IPH (1.56 vs. 1.47, P=0.032). SUVs did not significantly differ between plaques with an intact and thick, versus plaques with a thin and/or ruptured fibrous cap at MRI (1.21 vs. 1.23, P=0.323; and 1.45 vs. 1.54, P=0.727). Pearson ρ 's between CT and MRI measurements varied from 0.554-0.794 (P<0.001). For lipid-rich necrotic core (LRNC) volume, the CT-MRI correlation was stronger in mildly (\leq 10%) than in severely (>10%) calcified plaques (Pearson ρ 0.730 vs. 0.475). Mean difference in measurement \pm 95% limits of agreement between CT and MRI for minimum lumen area, volumes of vessel wall, LRNC, calcifications, and fibrous tissue were 0.4 (P=0.744) \pm 18.1 mm², -41.9 (P=0.450) \pm 761.7 mm³, 78.4 (P<0.001) \pm 305.0 mm³, 180.5 (P=0.001) \pm 625.7 mm³, and -296.0 (P<0.001) \pm 415.8 mm³, respectively.

Conclusion. Overall, correlations between ¹⁸F-FDG PET and CT/MRI findings are weak. Correlations between CT and MRI measurements are moderate-to-strong, but there is considerable variation in absolute differences. Future prospective longitudinal studies should determine which imaging modality is most effective for risk stratifying patients for stroke.

Figure 1. Fused ¹⁸F-FDG PET/CT image of a transverse section of a plaque in the internal carotid artery. Region of interest (ROI) (yellow) encompassing the plaque was drawn on the CT image. On the co-registered ¹⁸F-FDG PET image, mean and maximum SUV of ¹⁸F-FDG was measured within this ROI.

Figure 3. Co-registered T1w TFE, TOF, T2w TSE, pre- and post-contrast T1w TSE images of a transverse section of a carotid plaque. The right Bottom panel displays the ROIs: red=lumen; green=outer vessel wall; yellow=LRNC; orange=calcifications; remaining vessel wall area=fibrous tissue. Intraplaque hemorrhage was scored as being present (asterisk in TOF image) and the FC was designated as thin and/or ruptured (arrow in post-contrast T1w TSE image).

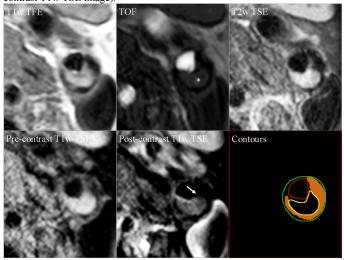


Table 3. Comparisons between CT and MRI

Table 5. Comparisons between C1 and wire.							
CT- and MRI-assessed	Mean value	Mean value	P-value				
parameter	at CT±SD	at MRI±SD					
Minimum lumen area (mm²)	18.7±14.9	18.2±9.9	0.744				
Vessel wall volume (mm ³)	836.3±604.7	878.2±405.8	0.450				
LRNC volume (mm ³)	169.1±187.5	90.8±147.3	< 0.001				
Volume of calcifications (mm ³)	246.3±356.6	65.8±80.3	< 0.001				
Volume of fibrous tissue (mm ³)	421.0±292.1	716 9±281 0	< 0.001				

Acknowledgement

Supported by Dutch Heart Foundation grant 2006B61.

Figure 3. CT images of a transverse section of a carotid plaque. ROI encompassing the plaque and arterial lumen has been drawn on the CT image (A). To differentiate lumen area from the plaque area and from calcified tissue, a second ROI has been drawn (B). This second ROI should include the attenuated lumen area, but no calcifications. After the input of the cut-off values that differentiate the plaque components and the lumen, a pixel map based on HU values was obtained (green=arterial lumen; blue/white=calcifications; yellow=lipid; magenta/red=fibrous tissue) (C).

A	В	C

	0,	9

Table 1. Correlations between mean and maximum SUVs and CT/MRI-assessed Morphological and compositional plaque characteristics.

	Mean SUV		Maximum SUV	
CT-assessed parameter	Spearman ρ	P value	Spearman ρ	P value
Minimum lumen area	0.026	0.859	0.032	0.827
Vessel wall volume	0.114	0.429	0.319	0.024
LRNC volume	0.222	0.122	0.377	0.007
Volume of calcifications	-0.088	0.542	0.070	0.629
Volume of fibrous tissue	0.187	0.194	0.385	0.006
MRI-assessed parameter	Spearman ρ	P value	Spearman ρ	P value
Minimum lumen area	0.119	0.410	0.064	0.656
Vessel wall volume	0.188	0.192	0.353	0.012
LRNC volume	0.088	0.541	0.246	0.085
Volume of calcifications	-0.102	0.481	-0.030	0.838
Volume of fibrous tissue	0.253	0.076	0.378	0.007

Table 2. Correlations between CT and MRI.

CT- and MRI-assessed parameter	Pearson ρ	P-value
Minimum lumen area	0.794	< 0.001
Vessel wall volume	0.773	< 0.001
LRNC volume • All plaques • Only mildly (≤10%) calcified plaques • Only severely (>10%) calcified plaques	0.591 0.730 0.475	<0.001 0.003 0.003
Volume of calcifications	0.554	< 0.001
Volume of fibrous tissue	0.727	< 0.001

References

- Kwee RM, et al. Identifying vulnerable carotid plaques by noninvasive imaging. Neurology. 2008;70:2401-2409.
- Tawakol A, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. *J Am Coll Cardiol*. 2006;48:1818-1824.
- De Weert TT, et al. In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. *Arterioscler Thromb Vasc Biol.* 2006;26:2366-2372.
- Cappendijk VC, et al. Comparison of single-sequence t1w TFE MRI with multisequence MRI for the quantification of lipid-rich necrotic core in atherosclerotic plaque. *J Magn Reson Imaging*. 2008;27:1347-1355.
- Cai J, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high resolution, contrast-enhanced magnetic resonance imaging and histology. *Circulation*. 2005;112:3437-3444.