Myocardial T₂ Using Single-Shot Turbo Spin Echo: Regional Trends in Healthy Controls and Myocardial Infarction K. Chow¹, J. A. Flewitt²³, J. D. Green⁴, M. G. Friedrich²³, and R. B. Thompson¹¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada, ²Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada, ³Radiology, University of Calgary, Calgary, Alberta, Canada, ⁴Siemens Healthcare, Calgary, Alberta, Canada ## Introduction T₂ weighted imaging identifies changes in myocardial water mobility and has been used to differentiate acute from chronic myocardial infarction¹ and for characterizing tissue changes with myocarditis². In this study, we evaluate a technique for rapid T₂ quantification in a single breath-hold per slice using a tailored half-Fourier single-shot turbo spin echo (HASTE) sequence³ for measuring T₂ values in healthy myocardium and regional T₂ changes in acute myocardial infarction. # Methods HASTE T₂ Sequence: The HASTE sequence was modified by adding a variable number of dummy 180° refocusing pulses between the 90° excitation and image acquisition³. Three images with echo times of 27.0, 54.2 and 81.4ms (corresponding to 0, 8, and 16 dummy pulses respectively) were acquired in a clinically useful breath-hold duration (10–15 seconds). Double inversion dark blood with a slice width double the imaging slice width was used to null the blood pool signal. A minimum delay of 4 seconds between images minimized T₁ weighting. Total acquisition time per image was one R-R interval with a typical acquisition window of ~200ms. In Vivo Human Study: 10 healthy volunteers (7 male, 33.7±9.2 yrs) and 11 patients with acute myocardial infarction (8 male, 58.2±8.3 yrs, 2.4±1.2 days post infarction) were imaged on a Siemens Avanto 1.5T MRI system with informed consent and IRB approval. After basic localization, T₂ maps were acquired for 3 short-axis slices at the basal, mid-ventricular, and apical levels. ECG gating was used with a trigger delay appropriate for mid-diastolic imaging. Slices had in-plane resolution of 1.875 × 1.875 mm² with 8.0 mm thickness. A 32 channel coil (16 elements anterior and 16 posterior) was used for signal reception. Late enhancement imaging using a segmented gradient echo sequence following injection of Gadolinium (Magnevist, typical 0.2 mmol/kg body weight) was performed on patients but not healthy subjects. T₂ Analysis: For each short axis slice, manually traced epicardium and endocardium contours defined the myocardial tissue, with positional adjustments made on each echo time image to account for residual breathing motion (custom software, MATLAB). These contours were used in conjunction with the right ventricle insertion point for modified AHA segmentation⁴. Each short-axis AHA segment was circumferentially subdivided into 5 segments for increased circumferential resolution. The average signal intensity within each segment at the three TE values was fitted to a mono-exponential decay function using least squares minimization. Healthy Subjects: Inadequate dark blood suppression in the apical slice generated image artifacts that resulted in anomalous T₂ values for one healthy subject that was excluded from subsequent analysis. For all subjects (patients and controls), a total of 1600 segments were analyzed, each containing (a) 31.0±10.2 pixels. Fig. 1a shows a bullseye plot of average T₂ for healthy subjects (overall average 56.9±6.1ms). Segments from the apical slice had higher T₂ values than those from the basal slice (60.0±6.3 ms vs. 54.9±5.6 ms, p<0.001 Student's ttest). In the basal slice, segments in the lateral (free) wall had reduced T₂ times compared with other segments in the slice $(52.6\pm4.4 \text{ vs. } 56.1\pm5.7 \text{ ms, p} < 0.001)$. Acute Myocardial Infarction: The T_2 map for a patient 5 days post myocardial T_2 infarction (proximal right coronary artery (pRCA)) is shown in Fig. 1b. Significant T₂ enhancement is seen in inferoseptal regions and overlaps with pRCA perfusion territory and late gadolinium enhancement (Fig. 1c). All 11 patients showed large regions of significant T₂ increase using a threshold of 3 standard deviations (i.e. 18.6 ms) above the mean for abnormal segments. The number of abnormal segments in each patient, out of 80, are {75, 39, 30, 5, 19, 22, 6, 11, 35, 15, 36}. At this threshold, 3.75% of segments in healthy subjects were classified abnormal, but with **(b)** no more than two contiguous abnormal segments. ## **Discussion** Overall myocardial T₂ for healthy subjects is in good agreement with previously reported T₂ values^{3,5,6}. Whole-heart T₂ maps for 9 healthy subjects show consistent regional variations with elevated T₂ in the apical slice and reduced T₂ in the lateral wall of the basal slice. Existence of regional variations in T₂ would be important in interpreting clinical findings, but may reflect artifacts such incomplete black blood suppression, particularly at the apex, or motion artifacts at the base, and additional studies are needed to validate these findings. All 11 myocardial infarction patients showed large contiguous regions of significantly increased T₂ (>18.6 ms above the normal volunteer means), ranging from 6% to 94% of the myocardium. Fig. 1 (a) Average T₂ for 9 healthy subjects; average over all segments is 56.9±6.1ms. Concentric rings depict apical, mid, and basal slices in the outward direction. T_2 map (b) and late gadolinium enhancement (c) for a patient with pRCA myocardial infarction. Elevated T2 values in inferoseptal regions overlap with late enhancement. - 1) Abdel-Aty H et al. Circulation. 2004;109:2411-6 2) Abdel-Aty H et al. J Am Coll Cardiol. 2001;37:786-92 3) Gouya H et al. Am J Roentgenol 2008;190:1576-82 - 4) Cerqueira MD et al. Circulation 2002;105:539-42 5) Foltz WD et al. Magn Reson Med. 2003;49:1089-97 6) Huang TY et al. Magn Reson Med. 2007;57:960-6