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Introduction: Quantitative image quality assessment is an unresolved issue in MRI, especially for partially parallel imaging (PPI) [1, 2]. It follows that no clear 
definition can be made for the “optimization” of a reconstruction algorithm. This also makes it difficult to evaluate the design of a receive coil array for PPI. To tackle 
this issue, we propose a mathematical model to reduce the complexity of image quality assessment by separating the reconstruction error into three components, which 
affect image quality in different fashions because of their different patterns in image space. In this model, explicit representations are given for three types of errors in 
the reconstruction of Cartesian imaging data. These errors are distinguished as image fidelity error, residual aliasing artifacts, and amplified noise. Based on this model, 
practical techniques can be developed with the freedom to quantitatively adjust the relative significance of three types of errors in a reconstruction algorithm. By 
minimizing the weighted sum of square errors, the algorithm can provide a good balance of three types of errors and the overall imaging performance can be optimized. 
This study is an important step toward a potential solution to quantitative image quality assessment. 
Theory: In general, the reconstruction of a set of 2D parallel imaging data can be represented as the weighted 
sum of acquired N-channel images in image space [3]. This relationship is shown in Eq. (1), where (x,y) is the 
2D spatial coordinate, N is the channel number of a coil array, ˆ ( , )m x y  is the reconstructed image, {ui(x,y), i=1, 
2, …, N} represents the weighting coefficients for reconstruction and is referred to as "reconstruction operator" 
in this work, and {ai(x,y), i=1,2,…, N} represents the acquired N-channel images, which may have aliasing due 
to undersampling in k-space. An acquired image from the ith (i=1,2,…,N) channel, ai(x,y), can be represented 
using the real ith-channel image di(x,y) and the noise ni(x,y), as shown in Eq. (2), where R is the reduction 
factor in undersampling, and Fx is the FOV in phase encoding direction x. From Eqs. (1) and (2), one can 
derive Eq. (3). It can be seen that the difference between the reconstructed image ˆ ( , )m x y  and the object image 
m(x,y) is the sum of three error components e1, e2, and e3, which are given by Eqs. (4)-(6). Eq. (4) evaluates 
how well the real image intensity at position (x,y) is preserved in reconstruction and we refer to e1 as "image 
fidelity error". Eq. (5) indicates whether the image aliasing from positions other than (x,y) would be totally 
removed and e2 represents the residual aliasing artifacts. Eq. (6) describes how reconstruction operator 
amplifies the noise in the acquired images and e3 represents the amplified noise. These three types of errors can 
be also understood as follows: Every reconstruction algorithm is based on a linear equation in the form of 
"Ax=b", where the vectors x and b are from the fully- and under-sampled data respectively, and A is a matrix related to coil sensitivities. Perfect reconstruction requires 
calculating a matrix B for reconstruction such that BA equals an identity matrix. The image fidelity error e1 is generated from the "non-identity" of diagonal elements in 
BA and the residue aliasing artifacts e2 is from the "non-zero" of non-diagonal elements in BA. The power gain in the matrix B may amplify the noise in reconstruction 
and is the cause of amplified noise e3. Different reconstruction algorithms minimize different combinations of three types of errors. For quantitative assessment, one can 
use Eqs. (4)-(6) to separate the mixed effects of three types of errors on the image quality. To optimize reconstruction, we propose to minimize the weighted sum of 
square errors 2 2 2

1 2 3e e eα β+ + , where α and β are the relative weightings on aliasing artifacts and amplified noise with respect to that on data fidelity error. 

Methods and Materials: Practically in parallel imaging, the real images di(x,y)'s and m(x,y) are not available. The reconstruction operator can be calculated from a set 
of fully sampled low-resolution calibration data, which is either from pre-scan or from auto-calibration signals (ACS). The calibration data has high SNR. We can use 
this set of high SNR calibration data to approximate the noise-free images di(x,y)'s and m(x,y) in the above equations. This will give a practical representation of three 
types of errors. The use of weighting parameters (α,β) allows the suppression of image fidelity error, aliasing artifacts, and noise to different degrees in reconstruction. 
The reconstruction operator can be calculated either in image space or in k-space. In k-space, the multiplication in above equations will become the convolution. The k-
space data of images di(x+jFx/R,y)'s for j≠0 can be calculated by applying a linear phase adjustment to the calibration data in k-space. In this work, the proposed model 
was investigated using a set of brain imaging data acquired from an 8-channel coil array on a 3T clinical MRI scanner. A set of axial images was acquired with full 
Fourier encoding using a T1 FLAIR sequence (FOV 220×220 mm, matrix size 512×512, TR 3060 ms, TE 126 ms, flip angle 90°, slice thickness 5 mm, number of 
averages 1). The phase encoding direction was left-right. The noise data for the calculation of amplified noise is acquired from a noise scan. 
Results and Discussion: As an example, we investigated a k-space reconstruction method based on the proposed 
model using the brain imaging data. The acquired data was manually undersampled by a factor of 4. In calibration, 24 
ACS lines were used. The 3D plot in Fig. 1 shows how the weighting parameters (α,β) affect the total reconstruction 
error with respect to the reference image in Fig. 2(a). Three regions of high error in Fig. 1 are marked with "F", "A" 
and "N". These letters represent three types of errors: image fidelity error (F), residual aliasing noise (A), and 
amplified noise (N). As shown in Figs. 2(b), (c), and (d), only one type of error is dominant in each of the regions F, 
A, and N and the patterns of three types of errors are different. The letter "B" in Fig. 1 indicates the region where 
three types of errors are well balanced using properly selected weighting parameters (α,β) and the total error is 
minimized. From the comparison of zoomed-in images in Fig. 2(e), (f) and (g), it can be seen that the reconstructed 
image in region B is less noisy than GRAPPA image, which drops in N region of Fig. 1. However, it should be 
understood that the best reconstruction for a particular application is not necessary to be in B region, where the total 
reconstruction error is lowest. Different application has different requirements for image fidelity error, aliasing 
artifacts, and noise level. The freedom in selecting weighting coefficients (α,β) in a reconstruction algorithm offers 
the possibility to optimize the reconstruction for different requirements. Practically, it is also usual that the data 
acquired from different imaging experiments contains different percentage of real image information, aliasing, and 
noise. The techniques based on the 
proposed mathematical model offer the 
advantage in suppressing three different 
types of errors based on the composition of 
actual datasets. Further work will focus on 
how each type of reconstruction error 
affects the imaging quality in the sense of 
clinical significance. 
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Fig. 1 3D plot of reconstruction error 
against weighting parameters α and β. 
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Fig. 2 (a) Reference image reconstructed from the full k-space data. (b) Error pattern in N region. (c) Error pattern in F 
region. (d) Error pattern in A region. (e), (f) and (g) are zoomed-in images inside the rectangular box in (a). (e) 
Reference image. (f) Reconstructed image using GRAPPA. (g) Reconstructed image in B region based on the proposed 
model. The reconstruction error of (g) (15.78%) is much less than that in (f) (21.94%). 
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