Correlation of ¹H NMR Characteristics and Mechanical Properties in Human Cortical Bone

R. A. Horch^{1,2}, J. S. Nyman^{3,4}, D. F. Gochberg^{1,5}, and M. D. Does^{1,2}

¹Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States, ²Biomedical Engineering, Vanderbilt University, Nashville, TN, United States, ³VA Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN, United States, ⁴Orthopaedics & Rehabilitation Medicine, Vanderbilt University, Nashville, TN, United States, ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States

Introduction: Modern Magnetic Resonance Imaging methods such as ultra-short echo time (uTE) imaging are capable of imaging proton signals from human cortical bone [1], which shows much promise for non-invasively assessing bone health in ways that current X-ray based methods cannot provide. Since human cortical bone consists of numerous proton and/or water-bearing physiological sites such as collagen, lipids, minerals, and nanoscale-to-macroscale porosity, it is expected that the bone proton signal exhibits a distribution of transverse relaxation (T_2) components [2]. In a previous NMR characterization of human cortical bone specimens [3], it was determined that T_2 components ranging from 50µs to 1s can be attributed to collagen, collagen-bound water, lipids, and mobile water in porous spaces. Herein, we employ this characterization in conjunction with mechanical testing to probe the ability of T_2 relaxometry to predict cortical bone mechanical properties. Sensitivity of T_2 features to mechanical properties in bone would provide a contrast mechanism that many MRI protocols could exploit as a new means for assessing bone health.

Methods: Human cortical bone specimens were harvested from the mid-shaft of seventeen healthy male and female donor femurs (5 young donors, 26.2 ± 5.4 Y.O.; 8 middle-age donors, 52.8 ± 4.2 Y.O.; and 4 old donors, 88.8 ± 7.1 Y.O.). Specimens were machined into 5x2x60mm beams to remove periosteum and endosteum layers, yielding uniform cortical bone. The beams were sectioned into a central 40mm piece for destructive mechanical testing and two flanking 10mm end pieces for NMR and μ CT analysis. Mechanical testing was performed under 3-point bending with a 35mm span to determine flexural modulus, yield stress (0.2% linear offset), ultimate stress, and toughness. NMR measurements were performed at 4.7T in a low-proton loop-gap coil with negligible background signal. For each specimen, a CPMG sequence was collected with 100 µs echo spacing, 10000 total echoes, and $90^{\circ}/180^{\circ}$ hard pulses of approximately 7.5/15 µs. CPMG echo magnitudes were fitted with a broad range of decaying exponential functions in a constrained non-negative least-squares sense, producing a so-called T₂ spectrum [4]. A 20μ L water marker (T₂ \approx 3s) was included with each bone specimen so T₂ spectral components could be quantified in terms of the volume fraction (VF) of bone that an equivalent amount of water would occupy. Finally, μ CT images were collected at 6μ m resolution, from which apparent bone mineral density (**aBMD**) was derived. All measurements were compared with a Pearson's linear correlation.

Results and Discussion: All human cortical bone specimens exhibited two discrete, sub-millisecond T_2 components and a broad range of T_2 values spanning 1ms-1s. For analysis, these components were grouped into three pools (Fig. 1): a short T_2 pool ($T_{2,A} \approx 67\mu$ s) of volume fraction VF_A , representing collagen macromolecules; an intermediate T_2 pool ($T_{2,B} \approx 420\mu$ s, VF_B) consisting of collagen-bound water; and a long T_2 pool ($T_{2,C} > 1ms$, VF_C) containing a mixture of lipids and free water [3]. The pools' T_2 s and volume fractions were compared to μ CT and mechanical properties (Table 1); data from a strong correlation set are shown in Figure 2. Interestingly, the pool T_2 s had poorer correlations to mechanical data than pool volume fractions. VF_B had the strongest correlation to mechanical properties, indicating that collagen-bound water is beneficial to bone integrity. Surprisingly, VF_B was a better predictor of all bone mechanical properties than aBMD (sensitive only to mineralization), which shows the importance of non-mineralized components to bone strength. VF_C was negatively-correlated to mechanical properties, indicating that stronger bones possess less lipids/mobile (pore-space) water than weaker bones. Importantly, the opposing mechanical correlations of VF_B and VF_C represent competing phenomenon which would confound an MRI-based bone health diagnostic that could not distinguish short- from long-lived T_2 signals.

References: 1) Techawiboonwong, A., et. al. Radiology 248(2008): 824-833.

2) Fantazzini, P., et. al. Magn. Res. Imaging. 21 (2003): 227-234.

3) Horch, R., et. al. ISMRM 17th Annual Meeting, (2009) #1942. 4) Whittall, K., and Mackay, A., J. Magn. Res. 84(1989): 134-152.

Acknowledgements: The authors would like to acknowledge financial support from the NIH (grant # EB001744), the NSF (Career Award 0448915), and the Vanderbilt University Discovery Grant; also, we would like to thank Morgan Evans for assistance with specimen harvesting and preparation.

	Age	T _{2,A}	T _{2,B}	T _{2,C}	VFA	VF _B	VF _C	aBMD
Yield Stress	-	+	+		+	+	I	+
Ultimate Stress	-	+	+		+	+	I	+
Flexural Modulus			+		+	+	-	+
Toughness	_					+		+

Table 1. Correlation of age, NMR, and μ CT to mechanical properties. Shading indicates Pearson's correlation strength as follows: white for p<0.005, gray for p<0.05, and black for p>0.05 (not significant). Positive/negative correlations are denoted by "+"/"-", respectively. T₂ pool volume fractions were the strongest NMR predictors of mechanical properties, and **VF**_B was a stronger predictor of each mechanical property than **aBMD**—a current "gold standard" for assessing bone health.