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Introduction 
Alzheimer’s disease (AD) neuropathology is characterized by key features that include the deposition of the amyloid-beta peptides into senile plaques, the formation of 
neurofibrillary tangles, and the loss of neurons and synapses in specific brain regions. Here we report a measure of AD evolution based on the use of MR images of the 
APP transgenic mouse brain to visualize neuronal loss. A novel semi-automatic segmentation method is used to quantify the regional differences in 3D images of the 
pyramidal cell layer in hippocampal CA1 subfield (PLCA1) in wild type (WT) control and 5xFAD [1] transgenic mice, a very rapid progression AD model. The 
proposed method uses unsupervised support vector machines (SVM) [2] to discriminate the PLCA1 voxels, and their distance to the classification hyperplane is used for 
a detailed analysis of PLCA1 characteristics.  
Methods 
Transgenic Mice: 5xFAD transgenic mice coexpressing a total of five FAD mutations [APP K670N/M671L (Swedish) + I716V (Florida) + V717I (London) and PS1 
M146L + L286V] were generated in a collaborator’s laboratory [1].  MR imaging: Brains fixed in 4% paraformaldehyde were used for imaging.  During imaging, brains 
were immersed in Fomblin (a perfluorinated liquid) to prevent dehydration and reduce magnetic susceptibility gradients. All imaging experiments were performed on a 
Bruker Avance 14.1T imaging spectrometer fitted with a 100G/cm gradient using a 10 mm resonator tuned to proton frequency (600MHz). 3D images were acquired 
using a fast spin-echo (RARE8) pulse sequence and the following imaging parameters: TR/TEeff 2500ms/40ms; pixel size 35µm x35 µm x35 µm.   
PLCA1 Analysis: The voxels of MR Image I are described using 3D “sheetness” features that match the PLCA1 MR appearance and are based on the Laplacian and 
Hessian matrix of the volume intensity function combined with isotropic Gaussian blurring. Laplacian L(I) = div (grad (I)) is used to model the neuronal layer core, 
defined as regions with small derivatives, surrounded by neighbors with rapidly increasing intensity. L(I) is the degree to which the gradient vector field flow behaves 
like a source or a sink. The other feature is the largest positive eigenvalue of the Hessian matrix Hjk(I)= DjDk(I), the square matrix of second-order partial derivatives. 
The Hessian eigenvalues provide a curvature analysis that is independent of the data coordinate system and they have been used previously to determine voxel’s vessel 
likelihood [3]. For classification, we define the CA1 pyramidal cell layer as an outlier detection problem of one-class [4] SVM (OCSVM). OCSVM is an extension of the 
two classes SVM, which estimates a classification function that encloses a majority of the training prototypes in a feature space. We use µ-SVM, an OCSVM 
implementation that computes a hyperplane to separate a specified fraction (1- µ) of data with the maximum distance to the origin. SVM classification uses kernel 
methods to project the original data space into a high dimensional feature space, and a linear classification in the latter is equivalent to a nonlinear classification in the 
former. We use Radial Basis Function (RBF) kernel, k(x; xi) = 2|||| ixxe −− γ , where γ determines the kernel width [5]. Our method has two training steps. First, an 
OCSVM model is created by training on a 10 M 5xFAD mouse dataset where the CA1 cell layer loss is most visible. This model will classify as PLCA1 any voxel that 
has features different than the delineated brain region in the training dataset. Then, a two class SVM is trained on a wild type 10 months old mouse dataset where the 
PLCA1 is clearly visible The training is performed using the labels created by the OCSVM classifier. The resulting classifier is then applied to all datasets.  
Results and Discussion 
We applied our algorithm to images of 12 excised mouse brains: six 5xFAD mice (age 2 (n=2), 4 (n=2) and 10 (n=2) months) and six control mice (same ages). For 
each dataset the volume of interest (VOI) around the PLCA1 was delineated manually. For each VOI voxel the algorithm generates two measures: the PLCA1 label (0 
or 1) and the distance (SVMDist) to the SVM separation hyperplane (positive values for PLCA1 labeled voxels). SVMDist combines both classification features and 
measures the neuronal cell loss as indicated by the MR contrast. The total PLCA1 volume and its average SVMDist for each dataset are compared in Figure 1. Cerebral 
amyloid deposition begins in 5xFAD transgenic mice at 2 months of age and reaches a very large burden by 9-10 months of age, especially in the subiculum and deep 
cortical layers. Our results show that this age dependant evolution of plaques is matched by the MR signal loss in the PLCA1. Figure 2 shows the PLCA1 labeled voxels 
qualified with the SVMDist index. The distribution of the neuronal cell loss within the PLCA1 is shown in Figure 3, which may be a useful tool to understand the 
mechanism of cell loss in AD. Similar behavior of the PLCA1 volume and SVMDist distribution has been observed in MR images of live animals. Although our initial 
histology validation shows that the MR signal loss is related to cell packing pattern visible in PLCA1, a more thorough stereological analysis is needed to correlate the 
presented MR signal loss with neuronal cell loss. Unlike senile plaques, neuronal cell loss shows strong correlation with cognitive decline in AD. Therefore, the 
presented technique could be used for tracking AD evolution and asses emerging AD therapies. 
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Figure 2 
2D sagittal section through the 3D MR image 
of a wild type (a) and 5xFAD (b) mouse 
brain. Corresponding SVMDist distribution (c 
and d) within the PLCA1 labeled area shows 
that voxels with high (yellow arrow in a and 
c) and low (green-dotted arrows) MR contrast
can be differentiated Furthermore, despite the 
different MR signal ranges in a and b, the 
corresponding SVMDist values can be 
directly compared between different datasets.

2M WT 2M 5xFAD

MR data 

SVMDist

MR data 

9000 22000 

SVMDist

a b

c d0

0.1

0.2

0.3

0.4

2 4 10
age (M)

H
C

A
1S

 V
ol

um
e 

(µ
L)

TG

WT

0

50

100

150

200

250

2 4 10
age (M)

N
or

m
al

iz
ed

 D
to

SV
M

H
P 

(1
/µ

L) TG

WT

Figure 1 
PLCA1 volume (a) and average SVMDist index (b) evolution with 
age is opposite for 5xFAD (solid blue) and WT (dotted green) mice. 
Note that the PLCA1 MR contrast increases with age in WT animals, 
even if this is less visible in the PLCA1 volume alone. 
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Figure 3 
Volume rendering of the SVMDist index 
within the PLCA1  classified volume of 
a 2M TG (a), 10 M TG (b), 2M WT (c) 
and 10 M WT (d) mice. The neuronal 
loss measured by the SVMDist index is 
already apparent in the 2M TG when 
compared to the control 2M WT (Figure 
1b), even though the PLCA1 volumes 
are similar (Figure 1a). The SVMDist 
distribution further decreases at 10 M for 
the TG mouse in contrast with the 
increase in the 10 M WT mouse.  
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