

Novel Magnetization-prepared Multi-slice Multi-shot EPI Pulse Sequence for T1rho Quantitation

E. T. Han¹, W. Chen¹, and A. Shankaranarayanan¹

¹Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States

Introduction In recent years, quantitative T1rho pulse sequence development has focused on novel 3D acquisition schemes, supporting the coverage of fairly large anatomical regions of interest (i.e. full knee coverage) [1-3]. However, there are still numerous clinical scenarios where rapid or higher resolution evaluation of a focal region-of-interest is desired. Examples of such scenarios include the monitoring of a focal cartilage repair, hippocampal imaging for Alzheimer's disease, and the assessment of disc degeneration. In such cases, a multi-slice 2D acquisition method may be more appropriate and time-efficient than a 3D approach. Unfortunately, current multi-slice 2D T1rho techniques [4, 5] have shortcomings that impede their clinical adoption. Ref 4 obtains T1rho-weighted images that are contaminated by T2rho effects. By assuming a global T2rho value for all cartilage, Ref 4 attempts to retrospectively correct for these effects. Ref 5, on the other hand, successfully acquires images that exhibit "pure" T1rho decay. However, to achieve a clinically acceptable scan time, this approach uses multi-shot spiral readouts for image acquisition. Slice prescriptions for this sequence are, therefore, largely limited to oblique axial planes; because of aliasing the sequence is often unable to acquire images in the sagittal or coronal orientations. To overcome the shortcomings of these existing techniques, a novel magnetization-prepared multi-shot EPI pulse sequence is proposed. This novel sequence can acquire images in any arbitrary plane and does not require retrospective correction for contrast contaminants.

Methods Pulse Sequence: Unlike the EPI method proposed by Borthakur [6], this novel acquisition plays out a *single* T1rho Prep RF pulse cluster, 90°_x-SL_y-(-90°_x), prior to the rapid acquisition of *all* prescribed slices (1 shot per slice). As with Ref 5, this new pulse sequence uses RF chopping to maintain – during the subsequent 2D multi-slice acquisition – the contrast imparted by a non-selective magnetization preparation module, which would otherwise be corrupted by T1 recovery [7]. T1rho-weighted images were acquired by varying the duration of the spin lock pulse (TSL) during T1rho preparation. **Experiments:** After obtaining informed consent, the knees, spines and brains of healthy volunteers were scanned on a 3.0T GE Signa HDx system (GE Healthcare, Waukesha, WI). An 8-ch T/R knee coil (Invivo) was used for imaging the knee. Spine images were acquired with an 8-ch CTL coil. A Quad T/R coil was used for head imaging. Spine T1rho images were acquired with a spin lock frequency of 300 Hz. 500 Hz spin lock frequency was used for the imaging of all other anatomical sites.

Results The figures below show example *in vivo* T1rho-weighted images (a-d) and their corresponding T1rho maps (e). T1rho values of the tissues imaged were within the range of previously published values. Cartilage: 35-55 ms. Muscle: 28-32 ms. Intervertebral discs: 75-110 ms. White matter: 65-75 ms. Grey matter: 85-110 ms.

Fig 1. FOV: 14 cm; matrix: 256 x 200; slice thickness: 3 mm; 15 slices acquired; 10 shots; NSA: 4; ramp sampled, partial-ky, ASSET (R=2); scan time: 4 min 30 sec

Fig 2. FOV: 14 cm; matrix: 256 x 224; slice thickness: 3 mm; 10 slices acquired; 16 shots; NSA: 2; ramp sampled, partial-ky; scan time: 3 min 30 sec

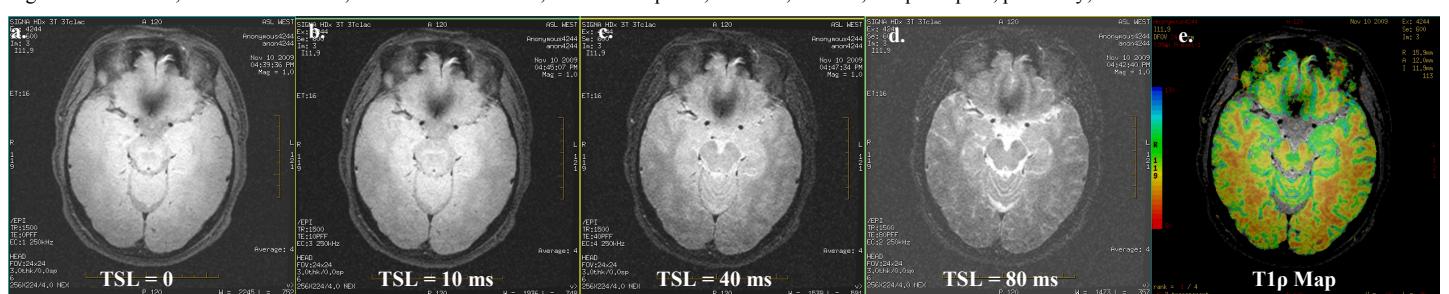


Fig 3. FOV: 24 cm; matrix: 256 x 224; slice thickness: 3 mm; 6 slices acquired; 16 shots; NSA: 4; ramp sampled, partial-ky; scan time: 7 min 45 sec

Fig 4. FOV: 26 cm; matrix: 256 x 224; slice thickness: 3 mm; 6 slices acquired; 16 shots; NSA: 4; ramp sampled, partial-ky; scan time: 10 min

References [1] Borthakur. JMRI, 2003 [2] Li. MRM, 2008 [3] Witschey. JMRI, 2008 [4] Wheaton. MRM, 2004 [5] Li. MRM, 2005 [6] Borthakur. JMRI 2006 [7] Wright. ISMRM, 1996