
Figure 2 –Plot of analytical and 
simulated Δf/(v(χ2- χ1) values 
against q of ellipsoids. 

Figure 3 –(a) Simulated frequency 
,map  for needle-like inclusions 
surrounding sphere of the same 
average volume susceptibility. (b) 
Magnified view of boxed region in 
(a); (c) Coarse resolution phase map 
with zero inclusion signal. 
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Figure 1 –Schematic showing 
ellipsoidal inclusions. 
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The effect of NMR-invisible susceptibility inclusions on phase maps. 
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Introduction:  Phase images generated using GE sequences at high field show exquisite anatomical contrast (1). This results from small changes of the NMR frequency 
that are linked to variation of the local magnetic susceptibility across tissues.  Previous analysis of this phase contrast has generally focused on the effect of the average 
magnetic susceptibility in a particular compartment (1, 2), but it was recently pointed out that in the case where a significant contribution to the average susceptibility 
comes from non-spherical inclusions that do not generate an NMR signal, the average NMR frequency offset is not simply proportional to the average susceptibility (3). 
The analysis presented by He and Yablonskiy (3) focuses largely on the case of cylindrical inclusions, which are representative of iron-rich oligodendrocytes in white 
matter, and they introduced the idea of replacing the conventional sphere of Lorentz (4) with a Lorentzian ellipsoid in order to account for the shape of the inclusions. 
Their analysis showed in particular that the average NMR frequency offset in a long cylinder containing long, cylindrical, NMR-invisible inclusions is independent of 
the susceptibility of these inclusions. Here, we extend the previous work by developing a simple expression based on the use of the conventional sphere of Lorentz, 
which allows the average NMR frequency offset to be calculated for compartments containing NMR invisible inclusions of varying shape and concentration.  

Theory: We consider the situation shown schematically in Fig. 1, where the sample consists of many identical, ellipsoidal inclusions of magnetic susceptibility, χ2, 
embedded in a matrix of susceptibility, χ1, confined to the shape, S, outside which the susceptibility is zero. We calculate the average NMR frequency offset as the sum 
of the effect of a shape, S, of uniform susceptibility, χ1, plus that of a distribution of inclusions of susceptibility, χ2-χ1. The average frequency offset produced by the 
uniform shape, S, is given by ( )zsDff −=Δ 3

1
101 χ , where f0 = γB0,  Dzs  is the z-demagnetizing factor of the overall sample shape (5) and the factor of 1/3 is the 

contribution of the sphere of Lorentz. To evaluate the effect of the inclusions on the average frequency offset, we assume that they are present in low concentration, and 
are randomly distributed, and first consider the field due to a single inclusion, in the two regions shown in Fig. 1. Inside the ellipsoid (Region A), the offset is given by 

( )zeA Dff −−=Δ 3
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120 )( χχ  where Dze is the z-demagnetizing factor 

of the ellipsoid. Using the fact that the integral of the frequency 
offset due to magnetic sources inside a spherical volume must be 
zero (6), the average frequency in region B is given by 

( )BAAB VVff Δ−=Δ , where VA and VB  represent the volumes of the 
two regions. We must finally add in a contribution to the average 
frequency offset, given by ( )zsC Dvff −−=Δ 3
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represents the effect of the other inclusions which are randomly 
distributed inside the sample  (v is the fraction of the sample volume 
taken up by the inclusions).  
Combining the contributions in the situation where the inclusions do 
generate an NMR signal, the effects of ΔfA  and ΔfB  cancel, yielding 
an average frequency offset given by Eq. [1] which, as would be 
expected, is equivalent to that occurring in a sample of shape, S, with a uniform susceptibility, χav, equal 
to the volume average of the susceptibility over the sample. More interestingly, when the ellipsoids 

generate no signal, the ΔfA contribution is lost and the resulting average frequency offset, which is now 
described by Eq. [2], cannot be represented using the volume average susceptibility alone. 

 
Inspection of Eq. [2] shows that the change in the relative frequency offset due to loss of signal from the ellipsoidal inclusions, depends on their volume fraction and 
shape, and on the difference of their susceptibility from that of the surrounding matrix. The extra term takes a value of zero, as would be expected, for spherical 
inclusions for which, Dze=1/3, and can be either negative or positive when χ2 >χ1

 depending whether the inclusion has a demagnetizing factor that is lower (prolate) or 
higher (oblate) than that of a sphere. It is also evident from this expression that the inclusions will have no effect on Δf when their shape is the same as that of the larger 
sample, such that Dze=Dzs; this is in agreement with the findings of He and Yablonskiy (2), who described this effect for cylindrical inclusions inside a long cylinder. 
 

Method:  To test the theory, we simulated the frequency perturbations produced by random arrangements of identical ellipsoids contained inside a spherical matrix, 
using a Fourier-based method (3) that takes account of the effect of the sphere of Lorentz. Simulations were carried out for different ellipsoids of revolution, which were 
characterised by their aspect ratio q = a1/a2 (see shapes at the top of Fig. 2) where a1 is the ellipsoid’s length along the symmetry axis and a2 is the size along the 
orthogonal directions, for an inclusion volume fraction of 1%. The frequency shift averaged over the whole sample and also excluding the inside of the ellipsoids was 
calculated in each case and the results compared with the theory described above, using standard expressions for the z-demagnetizing factor of an ellipsoid (5).  In 
addition, we simulated the phase maps that would be produced for small Δf, when a spherical region of uniform susceptibility is surrounded by material of equal volume 
average susceptibility, but in which there are needle-like, NMR-invisible, paramagnetic inclusions aligned with the field (Dze ~ 0.1).  
 

Results and Discussion:  Figure 2 shows that the average frequency offset in the simulated data is zero, as expected from Eq. [1] for a spherical sample (Dzs = 1/3), 
when the signal from inside the ellipsoids is included (blue line). When the signal from inside the ellipsoids is lost, the simulations (black continuous line) and theory 
(black dotted line) show that there is a non-zero frequency offset which varies from negative to positive as q increases from zero. The agreement between theory and 
simulation is good (small deviations result from the finite spatial resolution of the simulations). Figure 3c shows that two regions with identical volume average 
susceptibility, but different compartmentalisation of material, can have different intensities in phase images, and that the image shows a sharp boundary between 
regions. The effect shown in Fig. 3 might explain sharply defined phase changes observed in MS lesions (7) where demyelination may be accompanied by redistribution 
of iron.  The simple analysis outlined here can be used to predict the expected phase contrast in other situations where there is a significant contribution to the average 
susceptibility from NMR invisible inclusions. 
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