
Fig. 2: Denoising results from a single slice of both datasets. Original 
Image (left), proposed TV method with spatially dependent 
regularization (middle), regularization parameter map (right). Bright 
values in the parameter map correspond to high values of λ, which in 
turn means that the amount of regularization is small in this region. 

Fig. 3: FA maps from the original (left), 
and the denoised (right) DTI  data set. 
Magnified views of a ROI (bottom) 
demonstrate feature  preservation in 
fine structures. 

Fig. 1: A numerical example of 
spatially variant regularization. 
(a) A numerical test image. (b) 
Noisy test image. (c) TV denoising 
with λ=20. (d) TV denoising with 
λ=10. (e) λ map: λ=10 (dark 
region) and λ=20 (bright region). 
(f) TV denoising with spatially 
variant λ from subplot (e). 
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Introduction: The Total Variation (TV) regularization model is popular in MR research for various applications including 
denoising [1] or constrained image reconstruction [2]. In the TV-model, a regularization parameter controls the trade-off 
between noise elimination, and preservation of image details. However, MR images are comprised of multiple details. This 
indicates that different amounts of regularization are desirable for regions with fine image details in order to obtain better 
restoration results.  In this work spatially dependent regularization parameter selection for TV based image restoration is 
introduced. Utilizing this technique, the regularization parameter is adapted automatically based on the details in the images, 
which improves the reconstruction of details while still providing adequate smoothing for the homogeneous parts. 
Theory: In order to enhance image regions containing details while still sufficiently smoothing homogeneous parts, we improve 
the TV-model by using a spatially dependent regularization parameter instead of a scalar value only, i.e. we consider, 
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where z is the noisy image, u is the restored image, and TV(u) is the conventional TV penalty term [1]. In this model, λ is 
localized at image features. For small features, large λ leads to little smoothing so that details are usually preserved well. On the 
other hand, for large features, small λ leads to smoothing so that noise is removed considerably. Referring to [3], it can be shown 
that the minimization problem (1) is related to a constrained optimization problem of the type: 
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where σ2 is the noise variance, estimated from the image. Compared with the common TV-model, the constraint in the model (2) 
is confined to each local region Ωω instead of the whole image. Considering a restored image u from the TV-model with a 
relatively small λ, the residual r = z-u will include noise as well as details. Then, the violation of the local constraint in (2) 
reflects the distribution of details in the image. Roughly speaking, whenever the constraint in (2) is satisfied, it is assumed that in 
Ωω the residual primarily consists of noise; otherwise, significant image details are left in the residual. Therefore, λ needs to be 
increased in region of constraint violation in order to preserve the details in the reconstruction. This adjustment depends on a 
robust upper bound for the (local) constraint. For this purpose, the confidence interval technique from statistics [4] is introduced 
to automatically adjust λ based on the size of the windows Ωω. This yields a parameter-free method, i.e., without necessity of 
manually tuning parameters. Moreover, the minimization problem (1) is solved by a superlinearly convergent algorithm based on 
Fenchel-duality and inexact semismooth Newton techniques [3, 5]. The concept of spatially variant regularization is illustrated in 
Fig. 1 which shows the effect of different regularization parameters for a numerical test 
image. If the amount of regularization is too small, residual noise remains in the image. 
With higher regularization, noise is eliminated, but small image features start to disappear. 
The use of two different regularization parameters for the same image yields a result where 
noise is eliminated, and small features are preserved. 
Methods and Results: Two T2 weighted scans of the prostate and a diffusion tensor (DTI) 
data set of the brain were acquired on a clinical 3T system (Siemens TIM Trio, Erlangen, 
Germany). Written informed consent was obtained prior to the examinations. Sequence 
parameters of the first T2w scan were TR = 3300ms, TE = 107ms, matrix size =  320x320 
covering a FOV of 170x170mm2, 25 slices with a slice thickness of 3mm, 3 averages, turbo 
factor 13. Sequence parameters of the second T2w  scan were TR = 4290ms, TE = 116ms, 
matrix size =  512x512 covering a FOV of 180x180mm2, 21 slices with a slice thickness of 
3mm, 3 averages, turbo factor 15. DTI data were acquired with a diffusion weighted single 
shot SE-EPI sequence (TR/TE = 6.7s/95ms, in plane resolution = 1.95x1.95mm2, slice 
thickness = 2.5mm, 4 averages), with diffusion sensitizing gradients applied in 12 
independent directions (b = 1000s/mm²) and an additional reference scan without diffusion. 
Denoising was performed as a post-processing step using a Matlab implementation of the 
proposed spatially dependent regularization parameter selection TV method. DTI scans were 
then processed with FSL [6] including eddy current correction, brain skull extraction, 
diffusion tensor calculation and visualization. 
Discussion: The results from this work show that with spatially dependent regularization we 
obtain excellent image quality and preserve fine details (Fig. 2). It can also be seen in the 
parameter map that the algorithm delivers a good estimate of the details in different regions 
of the images. These parameter maps also provide additional information about the 
reconstruction quality for the user, because they highlight the regions where a large amount of filtering was performed. 
DTI results are shown as fractional anisotropy (FA) maps, which are color-coded according to the main eigenvector of 
the tensor (Fig. 2). Post-processed fiber tracts are more homogeneous regarding direction and FA value, whereas details 
of fine fiber tracts are still maintained (Fig. 3). This is in line with the morphology underlying and might improve 
applications such as fibertracking or segmentation of DTI data. From the constraint in (2), we can see that this work is 
based on the assumption that the noise variance σ2 is uniform in the whole image. This assumption is not valid in some 
imaging situations, e.g. when using phased array coils or parallel imaging, which leads to local noise amplifications. 
However, when the image includes small differences of the noise level, with slightly smaller variance estimation, the 
results of this work are still acceptable. Even if the images are composed of several pieces with noticeable different 
noise levels, our algorithm can be implemented similarly for heterogeneous σ2-values case, i.e., σ2 in the constraint of (2) 
is spatially dependent instead of a constant. In this case, information about local noise amplification, e.g. g-factor maps 
for specific coil geometries, can be included in the algorithm. This will be investigated in future work. With our Matlab 
implementation, which was not optimized in terms of computational efficiency, the computation times were 55s for a 
single slice of the first data set (matrix size 320x320), and 260s for the second data set (matrix size 512x512). An 
important feature of the proposed method is that it is completely free of parameter selections. The regularization 
parameter is adjusted automatically based on the noise level, and the distribution of the details in the image. 
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