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Introduction: Flow artifacts in MR images can appear as image ghosts within and outside the body cavity. Technical improvements aimed at suppress-
ing these image ghosts often rely on expert scoring (1,2) or on semi-automated methods demanding tissue segmentation and estimation of statistical 
properties of intensity distribution (3) to evaluate the efficacy of the methods. These approaches can be labor intensive, introduce observer bias, compu-
tationally demanding, and error-prone if tissue segmentation is used. Herein we propose two fully automated image-processing methods that rely on the 
statistical properties of background (noise) pixels to assess the presence of flow artifacts (appearing as image ghosts) without requiring tissue segmen-
tation. The first method rapidly evaluates the presence of flow artifacts in a global fashion, while the second one provides a more detailed characteriza-
tion of the artifacts. We evaluate the proposed methods in the setting of cardiac phase-resolved myocardial blood-oxygen-level-dependent (BOLD) MRI 
where different cine SSFP imaging strategies are proposed for overcoming flow artifacts. Finally we assess the utility of our automated approaches 
against expert scoring results.  
 

Methods: Imaging Studies: Six healthy dogs were studied in a Siemens 1.5T scanner using three different breath-held 2D SSFP cine sequences with 
known flow artifact properties. Imaging was prescribed in the basal position along the short axis, where flow artifacts are most pronounced: (A) Conven-
tional 2D cine SSFP (Repetition Time (TR, ms) / Bandwidth (BW, Hz/pixel) = 3.5/930, conventional cine SSFP with negligible myocardial BOLD sensitivi-
ty); (B) Standard long TR cine SSFP used for myocardial BOLD MRI (TR/BW = 6.2/239, optimal BOLD sensitivity with significant flow artifacts); and (C) 
Long TR cine SSFP with flow compensation for myocardial BOLD (TR/BW = 6.2/930, optimal BOLD sensitivity with expected reduction in flow artifacts). 
Scan parameters were: spatial resolution = 1.2x1.2x5 mm3, flip angle=70°, temporal resolution = 10-12ms, and no image acceleration (parallel imaging). 
Image Processing: Each cine study/stack I(x,y,t) (t denotes cardiac phase) was loaded in Matlab and the per-pixel mean (IA) and variance (IV) were 
found across t. A level-set method (4) was used to segment the body from the surrounding background in IA, initialized with a rectangle the size of IA. A 
contour is evolved until it converged to the body-air interface, providing a binary mask M (M=1 for air outside the body, 0 otherwise). Kurtosis-based 
Method: The image IR=IV/(IA)2 (pixel-wise division) is found and all values in IR in air (M=1) were collected to estimate the excess kurtosis (γ) of their dis-
tribution. We define QK=γ to quantify the presence of flow artifacts. Segmentation-based Method: The pixel values of the image I(x,y,t)/IA (image is di-
vided by IA) in air (M=1) were collected and Rician and non-central Student’s t models were fitted on their distribution (the Akaike Information Criterion 
(AIC) is used as goodness-of-fit.) The threshold T=μ+σ was defined, where μ, σ, are the mean and standard deviation (std) parameters of the best mod-
el. Artifact pixels in each image were identified as those with intensity > T. Following a 2x2 morphological dilation, the estimated total artifactual area 
(number of pixels) was recorded as nf. To estimate noise parameters, artifact regions were excluded from the image and the same models were refitted. 
The metric QS(t) was defined as QS(t)=(μf–μb)/σb · (nf /nM), where μf and nf are the mean intensity and total area of the artifacts, respectively;  μb and σb, 
are the mean and std respectively of the best model (based on AIC); and nM is the number of pixels in air. For each stack, the mean (QS1), std (QS2), and 
maximum (QS3) of QS(t) over all t were recorded.  Data Analysis: Three expert reviewers, blinded to the sequence used, scored 16 studies for the pres-
ence of ghost artifacts between 1 (least) to 5 (most). Kruskal-Wallis ANOVA with Tukey-Post Hoc analysis was used to test for the presence of statistical 
difference in scores/metrics among the sequences. The metrics were correlated with QH (median choice of reviewers) to assess accuracy. Statistical 
significance was set at P<0.05. 
 

Results: Fig. 1 shows results from a study with long TR (sequence B), where the artifacts were expected to be greater compared to those from images 
acquired with sequences A or C. The arrows in Fig. 1 demonstrate that IR retains artifact information and that the segmentation method (Fig. 1d) accu-
rately identifies the artifacts of Fig. 1a.  Fig. 2 shows a composite of bar plots (mean ± standard error) for each imaging sequence and scoring method. 
Statistical comparisons of scores from most of the automated methods identified a difference in the presence of ghost artifacts in images acquired with 
sequences A and B or B and C, and were in full agreement with the expert findings. Only QS1 failed to distinguish a quality difference among A and B, 
against expert findings. Regression analysis showed that QK had a strong correlation with QS2 (0.83, P<0.01) and QS3 (0.76, P<0.01) but not with QS1 
(0.5, P>0.1). The correlation of QH with QK, QS1, QS2, and QS3, was 0.7, 0.8, 0.92, and 0.93, respectively (all P<0.01). 
 

Discussion & Conclusions: Two automated approaches for estimating ghost artifacts in cardiac cine images were presented. Results showed a strong 
agreement with expert findings. Regressions showed that the kurtosis-based method (QK) can assess the variability of artifact presence in a stack with-
out processing each image separately as needed for QS2. It also showed that human observers are more likely to score for spurious and/or large artifact 
presence (strong correlation of QH with QS2 and QS3.) We anticipate that such automated methods could replace the time consuming and possibly biased 
step of expert evaluation. In contrast to other methods (3), the proposed approaches (i) combine high order statistics (kurtosis) and model fitting to esti-
mate the parameters; (ii) utilize the Student t model’s robustness to outliers (artifacts) and ability to approximate other distributions as an alternative to 
the Rician distribution; and (iii) offer increased robustness against bias by dividing with the mean image (IA). Although further studies are needed, mul-
tiple applications of these methods may be possible. First, the kurtosis approach may be useful to readily assess image quality in a clinical/research 
setting. Next, in a technical development setting, given the shear volume of images, it becomes unreasonable to expect experts to score the image 
stacks whenever new pulse sequences are tested. Thus, given the accuracy of the segmentation method (combining artifact-contrast-to-noise and area 
measurements) reproducible and unbiased estimates of ghost artifacts may be ascertained. Although the current study only tested the cine SSFP ap-
proaches, it is anticipated that the proposed methods could be tested whenever an unbiased and automated assessment of ghost artifacts is sought.  
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Fig. 2 Bar plots 
for QK and QH 
(A) and for the 
second method 
(B), grouped by 
sequence. 
Intervals on top 
indicate statis-
tical signific-
ance of individ-
ual compari-
sons (P<0.05). 

Fig. 1 a: An image acquired with sequence B; b: IΑ (mean of 55 im-
ages) used by both methods; c: IR image (QK=21); and d: artifacts of a, 
as detected with the segmentation method (QS(22)=0.23). b-d: Only 
pixels in air are shown (found by level-set segmentation). Arrows indi-
cate artifacts. 
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