
Figure 2.  (left) Acquired IR data on physical phantom (TI = 
9000 ms) (right) Estimated GFPV. 

Figure 1.  a) True glandular 
fraction per voxel (GFPV) in 
simulated phantom, b) 
estimated GFPV from IR data, 
c) estimated - true GFPV for 
IR data, d) estimated GFPV 
from SR data, e) estimated – 
true GFPV for SR data. 
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Introduction:  Women with a greater amount of dense breast tissue have a higher risk of developing breast cancer than women with fattier breast 
tissue [1-3]. Traditionally, breast density is clinically measured using x-ray mammography, which is a two-dimensional imaging technology, 
however three-dimensional modalities, such as MR, may provide more accurate estimates of breast density [4,5]. Breast density can be estimated by 
using segmentation algorithms to separate adipose and glandular tissues in an image. There exist a large variety of methods for image segmentation 
in MR including algorithms based on intensity thresholding, clustering, and Dixon techniques [6-9]. In breast MR, these methods are typically 
applied to the signal intensities in pre-contrast, T1-weighted images. In this study, we apply maximum likelihood (ML) estimation techniques to 
magnitude images as a method for image segmentation. This method is based on the signal equation of the acquired data and, therefore, takes into 
account some of the physics of the data acquisition process. We validate the method on simulated data and then apply it to physical phantom data. 
 

Methods:  A simulated breast phantom was created based 
on in vivo computed tomography (CT) data and used to 
generate noisy MR inversion recovery (IR) and saturation 
recovery (SR) magnitude images. A segmentation algorithm 
based on ML estimation was applied to estimate the partial 
volume segmentation that was then compared with the truth. 
This algorithm was also applied to physical IR phantom 
data. Simulated phantom data:  An intensity threshold was 
applied to an anonymous, archived, human, dedicated breast 
CT data set (binned to planar res. = 1.348 mm, slice thick. = 
0.207 mm) to approximately separate the adipose and 
glandular tissue types. Twenty-one contiguous slices were 
then combined to create a single simulated MR axial slice, 
where the phantom’s true glandular fraction per voxel 
(GFPV) was determined by the number of CT slices that contained adipose and glandular tissue at that location. Simulated IR and SR data were 
created by applying a double-exponential signal equation (T1adipose=240 ms, T1glandular=1290 ms, equilib. signal for all glandular or all adipose=1.0) for 
a set of inversion or repetition times (TI or TR=[35, 50, 75, 100, 150, 250, 400, 600, 900, 1500, 3000, 9000] ms) and adding noise (var.=2.5e-5) to 
each simulated image. Data for the IR experiment takes several hours to acquire and might be used to characterize phantoms, however the SR data 
can be acquired with a fast spin-echo sequence in approximately 9 minutes and is more clinically relevant. Segmentation algorithm:  Magnitude MR 
images have Rician-distributed noise [10]. The likelihood equation for Rician-distributed data has been previously derived [11] and can be used to 
estimate parameters of the MR image signal equation. Since adipose and glandular tissues have significantly different T1 values, we can use a T1 
sensitive imaging sequence to discriminate between them. We have applied the segmentation algorithm to both IR and SR data using double-
exponential signal equations to account for the two tissue types in the breast. The concentrations of the two tissue types (and, therefore, the fraction 
of glandular material in a voxel) as well as the T1 of the glandular tissue were estimated by maximizing the likelihood of the measured data. We 
assume that the T1 value of the adipose tissue is a known quantity; this can be determined separately using a monoexponential signal equation on a 
region with no glandular tissue. The maximization of the likelihood was implemented using a limited-memory Broyden-Fletcher-Goldfarb-Shanno 
method with bounds [12] in the R programming language. Physical phantom and data: The physical phantom was constructed using lard to simulate 
adipose tissue and coagulated fresh egg whites to simulate fibroglandular tissue [13]. A preservative was added to the egg whites before they were 
poured into melted lard and allowed to coagulate. The mixture was then cooled at room temperature in a sealed plastic jar. This procedure resulted in 
a random structure with a different glandular/adipose fraction in each voxel. IR scans (TI=[35, 50, 75, 100, 150, 250, 400, 600, 900, 1500, 3000, 
9000] ms, TE=15 ms, TR=10 s, resolution= 1x1x3 mm3) were performed on a Siemens Magnetom 1.5 T clinical scanner using a knee coil. For lard, 
the T1 value was estimated on a tube of solid lard assuming monoexponential signal behavior.   
 

Results:  Figure 1 shows the results of the analysis on the simulated data for the IR and 
SR experiments, showing the true GFPV, the estimated GFPV generated by applying 
the ML segmentation algorithm to the IR and SR data, and the absolute difference 
between the true and estimated GFPV. The algorithm accurately segments the two 
tissue types in the presence of noise. Figure 2 shows the results of the segmentation 
algorithm applied to the physical phantom data. Both the MR data and estimated GFPV 
are shown.   
 

Conclusions:  We have demonstrated that the ML segmentation algorithm is able to 
successfully separate tissue types in both simulated and phantom MR images. In the future we plan to apply this to human data and perform a 
quantitative comparison with other partial volume segmentation algorithms currently being used. This technique incorporates an imaging physics 
model and is insensitive to field inhomogeneities; advantages which may improve tissue separation compared to other methods. 
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