
(a) (b)

MATLAB CUDA(parallel)

Disto rt ion
im age

Und isto rted
im age

Fourier
t ransfo rm

Phase
M odulat ion

M exfunction
interface

M exfunction
interface

Field m ap

Matlab MexFunction
Interface CUDA

Figure 1: The communication interface and
program flow chart of our GPU accelerated
algorithm.

Accelerating phase modulation for correcting EPI geometry distortion by modern GPGPU parallel computation.

Y-H. Yang1, T-Y. Huang2, F-N. Wang3, and N-K. Chen4
1National Taiwan University of Science and Technology, Taipei, Taiwan, 2National Taiwan University of Science and Technology, 3Department of Biomedical

Engineering and Environmental Sciences, National Tsing Hua university, 4Brain Imaging and Analysis Center, Duke University Medical Center

Introduction
Reduction of computation / reconstruction time is critical for MRI, particularly when the information is needed immediately after the acquisition, such as for real-time
image guided therapy, among others. Even though most of the MRI data can be reconstructed immediately with FFT, many advanced algorithms still require long
computation time, making them impractical for real-time applications. For example, the 2D phase-modulation can be used to effectively remove EPI distortions based
on the field inhomogeneity information [1,2]. However, the calculation complexity of phase-modulation is Ny-fold larger than the regular 2D image reconstruction
(where Ny is the phase-encoding step), and the correction for dynamic EPI data (e.g. fMRI or perfusion) may take minutes even using the state-of-the-art computer
hardware. It is thus extremely difficult to extend the phase modulation to 3D, or to further combine phase-modulation with parallel imaging, due to its large
computation cost. Recently, the parallel computing using general-purpose computation on graphics processing units (GPGPU) has proven capable of accelerating the
scientific computation through parallelizing the algorithm. In this study, we evaluate the performance of the GPGPU technique in phase-modulation calculation, in
terms of the reduction of the the computation time.
Theory
The modern GPU equipped with massive parallel computing units, which are designed mainly for
high-resolution shading especially in 3D gaming environment. The computation cores can actually be used for
general arithmetic jobs. For the phase-modulation method, each phase-encoding line is modulated with a phase
accumulation calculated from the field map (eq.1).
 S൫m∆k୶, n∆k୷, l∆T൯ ൌ ׭ ρሺx, yሻ · expሺim∆k୶ሻ · exp൫in∆k୷൯ · φሺx, y, l∆Tሻdxdy (eq.1)
where ρ(x,y) is the spin density, ∆k୶ and ∆k୷ are the incremental in k-space, ∆T is the interecho time
interval and φሺx, y, l∆Tሻ is the phase error term of each line l. Notice that each k-space point can be calculated
independently and thus the method is suitable for parallel computing algorithm.
Material and Methods
Our program was implemented on GeForce GTX295 (NVIDIA, USA, processor cores per GPU:240 RAM per
GPU:896MB) using compute unified device architecture (CUDA) programming model. To be compatible with
other image reconstruction Matlab scripts developed in-house (Mathworks, USA), the program was further
incorporated with a communication interface with MATLAB. Our implementation consisted of the following
procedures. First, the k-space data, the field map, and the echo-spacing were transformed to C language-based
memory space with the MATLAB interface “mexFunction”. Second, the data were duplicated into the DRAM
of graphic card. Third, the corrected k-space data were calculated with the parallel computing threads. Each
k-space point was calculated with one thread performing phase-modulation and thus the threads could be
executed independently. Finally, the corrected k-space data and the reconstructed images (with
inverse-Fourier-transform) were transferred back to MATLAB work space for further image processing. The
developed algorithm was installed into our CUDA workstation (CPU: 4-core Intel i7, GTX296 GPU: 4).
The GPU-accelerated program for EPI distortion correction has been evaluated in two data sets. First, phantom
data were acquired with EPI with the following parameters: TR=1000ms, TE:62~71ms, ΔTE=1ms,
FOV=240mm, matrix=128×128, using a 3.0 Tesla MR system (Siemens, Tim-Trio, Erlangen, Germany). The field inhomogeneity was purposely enhanced by manually
adjusting the current of shim coil. A conventional turbo-spin-echo image was also acquired, and used as a reference. Second, a high-resolution diffusion-tensor data-set,
acquired in our previous PROPELLER-EPI study [3] conducted in MGH (Charlestown, MA), was processed with the conventional and GPU-accelerated
phase-modulation, and the results were then quantitatively compared. Scan parameters for PROPELLER-EPI (in a 3.0 Tesla MR system; Siemens Magnetom Allegra)
included TR/TE=1600/70ms, matrix=128×128, FOV=220mm slice: 16, diffusion gradient direction:6, blade:26. Note that the phase-modulation correction needed to be
performed on each blade for PROPELLER-EPI data. Furthermore, we also implemented a CUDA-accelerated version of “imrotate”, a MATLAB command for image
rotation (generally gain two-fold speed-up in PROPELLER reconstruction for matrix of 128×128, data not shown due to the length restriction in the abstract). Since our
system was equipped with multi-core CPU and multi-GPU, we also compared the computation speed using different numbers of CPU-cores and GPU.
Result
Our method was verified on the phantom study (see Figure 2). The shape of the corrected EPI image matched well with the conventional scan (red profile). The
acceleration factor of GPU over CPU was 2.89±0.07 (average value of ten times execution). Applying on the PROPELLER EPI data set, the parallel algorithm
reduced the computation time from ~1750 seconds (single core CPU) to ~100 seconds (four GPUs). The detail of the comparison (CPU versus GPU) was listed in table
1.
Discussion and Conclusions
In our study, the GPU computation was used to accelerate the EPI distortion correction, making it practical for real-time applications. The results showed that the
CUDA program effectively reduced the reconstruction time. The parallel computation reduced the total image reconstruction time of high-resolution diffusion-tensor
images by ~1650 seconds (by 94.24%). The significant
reduction in the reconstruction time should make the
high-quality PROPELLER-EPI much more practical for
clinical utilizations. Moreover, the accelerated distortion
correction should also benefit the fMRI study, consisting of a
large number of time-series data. Note that the
“double-precision floating point” is only supported in
high-end cards (GT200). Therefore, our program was
implemented using “single-precision floating point” for better
compatibility with existing systems. Our results show that the
error caused by single-precision calculation was acceptable
(less than 10-6 %). In conclusion, the GPU computing is a
promising method to accelerate EPI distortion correction.
References
[1]Zeng Huairen et al. MRM(2002)48:137-146
[2]Chen NA et al. MRM (1999)41:1206-1213
[3] Wang FN al. MRM (2005)54:1232-1240

Figure 2: (a) the distorted EPI phantom (b)
The corrected image reconstructed by
proposed method. The red profile overlaid
on top is the profile obtained from
conventional turbo-spin-echo scan.

Table 1: Computation time comparison
of CPU and GPU. The data-set for
reconstruction was the PROPELLER
EPI diffusion tensor imaging.

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 5065

