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Introduction 
Due to their long scan times, spectroscopic imaging (SI) experiments are particularly susceptible to motion-induced 
artifacts. Unlike in imaging experiments, these artifacts cannot be easily recognized and thus may lead to false 
diagnoses in clinical scans. Navigator echoes can be used to correct for motion in MRS, but this requires additional RF 
pulses and gradients, which substantially increase the scan time [1]. A prospective motion correction method employing 
an external optical motion tracking system has recently been proposed [2] and has already been successfully applied to 
single voxel spectroscopy (SVS) in the human brain [3]. However, motion correction without a real-time shim update 
can give rise to considerable frequency drifts in regions with an inhomogeneous susceptibility distribution. This 
problem can be tackled using the interleaved reference scan (IRS) method, originally proposed by Thiel et al. [4] and 
successfully combined with motion tracking for SVS by Buechert et al. [3]. In this work, prospective motion correction 
in combination with IRS-based retrospective phase correction was implemented, validated and applied for SI in the 
human brain. 
 
Materials and Methods 
Prospective motion correction and retrospective phase correction were implemented with a PRESS-based SI sequence 
on a Magnetom Trio 3T system (Siemens Healthcare, Germany) equipped with a phased array head coil for signal 
reception. The stereoscopic tracking system (ARTrack3, Advanced Realtime Tracking GmbH, Germany) reported 
positions of a mouth piece fitted with four retro-reflective spheres in six degrees of freedom [2]. The PRESS volume, 
the SI FOV and the outer volume suppression (OVS) slabs were updated after every TR. Retrospective phase correction 
was achieved with the IRS method [4, 5]. For validation purposes, SI data sets (8 × 8) were acquired from a large 
phantom bottle containing citrate (Cit) solution with a small cylindrical phantom containing lactate (Lac) solution 
attached to its wall (Fig. 1a). The phantom was rotated by approximately 90° after the first phase encoding step of the 
scan (Figs 1a and 1b). Data sets with and without motion correction were acquired and metabolite maps of Cit and Lac 
were created by peak integration in the respective chemical shift range as well as subsequent Fourier interpolation. In 
vivo 2D SI data (FOV = 20 cm, res = 16 × 16, TR = 2.7 s, TE = 30 ms, OVS with 8 slabs, scan duration ≈ 12 min) were 
acquired from the brain of a healthy subject (Fig. 2a), once with motion correction and once without. The subject was 
asked to tilt his head sideways by approximately 10° once per minute, back and forth between two previously defined 
positions. Acquisitions with motion above a certain threshold (2 mm translation and 3° rotation per TR) were rejected 
and automatically repeated, which increased the scan duration by about 30 s.  
 
Results   
The metabolite maps for Cit (Figs. 1c and 1d) and Lac (Figs 1e and 1f) from the phantom experiment show that phase encoding is correctly updated in the measurement 
with motion correction, while the uncorrected experiment yields metabolite maps corresponding to the rotated phantom. The bright spot in the upper-right corner of Fig. 
1f stems from a baseline artifact. Clippings (2 × 2) from the in vivo results are presented in Fig. 2. They show huge lipid contamination in the uncorrected spectra (Fig. 
2b), while in the motion-corrected spectra the spectral quality is preserved (Fig. 1c). Additional IRS phase deconvolution corrected for line broadening caused by 
motion-induced frequency drifts and created an SI data set with correctly phased spectra across the whole slice (Fig. 2d). 
 
Discussion 
The presented results demonstrate the feasibility of prospective motion correction for SI experiments. Due to the low concentration of brain metabolites compared to fat, 
and the coarse spatial resolution giving rise to an unfavourable point spread function, OVS plays a pivotal role in SI experiments. Therefore a real-time update of the 
OVS slabs is crucial, particularly for quantitative studies. The assignment of metabolic features to anatomical structures can also be affected by motion in between the 
SI measurement and the acquisition of the reference image for data analysis. Thus motion tracking and position locking between scans would be desirable. Motion-
induced frequency drifts can be corrected retrospectively, using the IRS method. A correction of higher order field changes would be beneficial, but would require a 
real-time shim update, which is beyond the capabilities of currently available clinical MR systems. For SVS the shim is very local, giving rise to large field distortions 
outside the selected voxel, which strongly impair the quality of motion-corrected experiments. For SI experiments, however, the shim volume usually comprises major 
parts of the SI slice, and therefore the shim is only mildly affected by in-plane subject motion. 
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Fig. 1: Spectroscopic imaging results for a 
phantom experiment with a rotation from a) 
to b) at the beginning of the scan: with 
motion correction (left), without motion 
correction (right). Metabolite maps for Cit 
(c, d) and Lac (e, f) are shown. 

 

Fig. 2: a) Setup for the SI 
experiment with the white 
box representing the PRESS 
volume and the red box 
indicating the origin of the 
presented spectra: b) without 
any correction, c) with 
motion correction, d) with 
motion correction and IRS 
phase correction. 
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