
Figure 1 Flow Chart of Parallel Optimization
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Introduction 
Calculating the susceptibility distribution responsible for a measured magnetic field is a well known ill-posed inverse problem [1]. Different methods have been 
proposed to overcome the ill-posedness, either through data acquisition strategy [2] or through regularization [3, 4]. These algorithms solve the problem iteratively by 
repeatedly applying the forward problem and updating the solution based on residue. In each iteration, dipole convolutions are done in the Fourier domain by 
performing point-wise multiplications while phase noise whitening is done in the image domain. The four Fast Fourier Transforms (FFT) needed for each iteration 
constitute a major bottleneck preventing fast image reconstruction. In this study, a parallelized FFT based on OpenMP was implemented to achieve quasi real-time 
susceptibility map reconstructions. 
Methods 
Weighted L2 gradient regularization (wL2) computes the susceptibility distribution χ  by minimizing the following penalty function: 
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iteratively. A conjugate gradient algorithm repeatedly calculates the forward problem and uses the residual to update the solution. The minimization problem can be 
equivalently written as ( )( )( )( ) ( ) ( )( )B
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v . Here four Fourier Transforms are used in every iteration and 

typically, hundreds of iterations are required for convergence.  
MPI (Message Passing Interface), OpenMP (Open Multi-Processing) and CUDA (Compute Unified Device 
Architecture) are three well-known programming interfaces for parallel computing. MPI is often used as the 
distributing interface on the cluster servers when the calculation can be efficiently divided into smaller 
independent problems. The OpenMP is an application programming interface (API) that supports 
multi-platform shared memory multiprocessing programming in C, C++ and Fortran on many architectures, 
and platforms. It has better performance for those problems which have a large amount of data sharing and 
switching on a multi-core CPU. CUDA is a GPU computing interface and it depends on nVidia special 
graphics cards to provide a powerful parallel computing environment. However, CUDA cannot work on 
non-support graphics card such as ATI graphics card. The weighted L2 gradient regularization is an iterative 
reconstruction algorithm that is hard to disperse. However, the Fourier transform can be computed in parallel 
and is ideally suited for OpenMP parallel optimization. 
The reconstruction processing of the 3D data may be dispersed into X, Y, and Z directions such that the 
reconstruction processing is parallelizable along the spatial dimensions. We designed a parallel optimization 
reconstruction algorithm, which processes several data blocks that are shared in the memory. The flow chart 
is shown in Figure 1. In iteration step, every block will be processed in parallel in different threads. To 
maximize usage of the CPU resources, we enable the 8 threads on a quad core CPU with the 
Hyper-Threading technology. Thus, the program is designed for up to 8 threads. Experimental data consisted 
of a 240 × 180 × 90 32bit float point matrix. Iterative precision was set to 0.1%. As the purpose of this paper 
is to accelerate the wL2 for real-time application, we implemented the parallel wL2 in C/C++ and compared 
with other implementations: a) Matlab 2007b non-multithreaded, b) Matlab 2009a non-multithreaded c) 

Matlab 2009a multithreaded d) 
FFTW 3.2 non-multithreaded, e) Parallel C/C++ with 4 threads, and f) Parallel C/C++ with 8 
threads. Calculation were done on a Dell Studio XPS 435MT, Intel Quad core i7 920 CPU 
2.66GHz, Vista SP2 64bit OS. Intel C++ Compiler 11.1 is used for FFTW C code and OpenMP 
parallel C/C++ code compiling. Matlab Compiler 4.6 (2007a)/ 4.10 (2009a) with C/C++ math 
library is used for M code compiling. 

Result 
Reconstruction times and speedup are shown in 
Table 1, Figure 2 and Figure 3; Parallel C/C++ 
with 8 threads wL2 can maximize usage of the 
quad core CPU resources in virtual 8 cores 
mode. In addition, it is 10 times faster than the 
fastest optimized Matlab program. 
Reconstructed images are show in Figure 4, 
with a parallel wL2 reconstruction image on the 
left and a Matlab wL2 reconstruction image on 
the right. 

Figure 4. Reconstruction Images 
Discussion and conclusion 
A considerable computational speed up was achieved using multithreaded parallel processing 
algorithm to accelerate the FFT bottleneck in the iterative conjugate gradient solver. The code 
was an order of magnitude faster that the fastest optimized matlab code. The iterative conjugate 
gradient algorithm for the reconstruction of the susceptibility maps can be further accelerated by 
using a higher end workstation and it is estimated that it can be achieved in 10 second using a 32 
core server for near real-time application with the ultimate goal of bringing quantitative 
susceptibility mapping to clinical practice. 
Ref: [1] Haacke et al, MRI:23:1-25; [2] Liu et al, MRM:61:196-204; [3] de Rochefort et al, 
MRM: in press; [4] Kressler et al, IEEE TMI:2009. 
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Figure 2 Reconstruction Times 
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Usage of CPU/% 13 14 32 13 50 92 

Time/s 769.7 621.5 407.6 301.1 60.1 38.4 

Speedup 1.00 1.24 1.89 2.56 12.81 20.04 

Table 1 Reconstruction Time Comparison 
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Figure 3 Reconstruction Speedup 
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