
Figure 1 Flow Chart of Parallel Optimization

Initialization Parallel

FFT

Block
…

Linear

Algebra

FFT

Block

Linear

Algebra
…

FFT

Block

Linear

Algebra

Yes

No

Precision Computing / Loop Continue?

Exit

Order of magnitude speedup for iterative algorithms in quantitative susceptibility mapping using multi-core parallel
programming

D. Cui1,2, T. Liu1, P. Spincemaille3, and Y. Wang4
1Biomedical Engineering, Cornell University, New York, NY, United States, 2Optic electronics, Beijing Institute of Technology, Beijing, China, People's Republic of,

3Radiology, Weill Cornell Medical College, New York, NY, United States, 4Weill Cornell Medical College

Introduction
Calculating the susceptibility distribution responsible for a measured magnetic field is a well known ill-posed inverse problem [1]. Different methods have been
proposed to overcome the ill-posedness, either through data acquisition strategy [2] or through regularization [3, 4]. These algorithms solve the problem iteratively by
repeatedly applying the forward problem and updating the solution based on residue. In each iteration, dipole convolutions are done in the Fourier domain by
performing point-wise multiplications while phase noise whitening is done in the image domain. The four Fast Fourier Transforms (FFT) needed for each iteration
constitute a major bottleneck preventing fast image reconstruction. In this study, a parallelized FFT based on OpenMP was implemented to achieve quasi real-time
susceptibility map reconstructions.
Methods
Weighted L2 gradient regularization (wL2) computes the susceptibility distribution χ by minimizing the following penalty function:

2

2

2

2
)())(()(minarg χαχδχ Grwdrrw GB ×+⊗−×= ∑ . This problem has a quadratic form and various numerical methods may be employed to solve the problem

iteratively. A conjugate gradient algorithm repeatedly calculates the forward problem and uses the residual to update the solution. The minimization problem can be
equivalently written as ()()()() () ()()B

H
G

H
G

H
r

H wwFTDFTGwwGFTDwFTwFTDFT δχαχ ⋅⋅=+⋅⋅⋅⋅ −−− 111
v . Here four Fourier Transforms are used in every iteration and

typically, hundreds of iterations are required for convergence.
MPI (Message Passing Interface), OpenMP (Open Multi-Processing) and CUDA (Compute Unified Device
Architecture) are three well-known programming interfaces for parallel computing. MPI is often used as the
distributing interface on the cluster servers when the calculation can be efficiently divided into smaller
independent problems. The OpenMP is an application programming interface (API) that supports
multi-platform shared memory multiprocessing programming in C, C++ and Fortran on many architectures,
and platforms. It has better performance for those problems which have a large amount of data sharing and
switching on a multi-core CPU. CUDA is a GPU computing interface and it depends on nVidia special
graphics cards to provide a powerful parallel computing environment. However, CUDA cannot work on
non-support graphics card such as ATI graphics card. The weighted L2 gradient regularization is an iterative
reconstruction algorithm that is hard to disperse. However, the Fourier transform can be computed in parallel
and is ideally suited for OpenMP parallel optimization.
The reconstruction processing of the 3D data may be dispersed into X, Y, and Z directions such that the
reconstruction processing is parallelizable along the spatial dimensions. We designed a parallel optimization
reconstruction algorithm, which processes several data blocks that are shared in the memory. The flow chart
is shown in Figure 1. In iteration step, every block will be processed in parallel in different threads. To
maximize usage of the CPU resources, we enable the 8 threads on a quad core CPU with the
Hyper-Threading technology. Thus, the program is designed for up to 8 threads. Experimental data consisted
of a 240 × 180 × 90 32bit float point matrix. Iterative precision was set to 0.1%. As the purpose of this paper
is to accelerate the wL2 for real-time application, we implemented the parallel wL2 in C/C++ and compared
with other implementations: a) Matlab 2007b non-multithreaded, b) Matlab 2009a non-multithreaded c)

Matlab 2009a multithreaded d)
FFTW 3.2 non-multithreaded, e) Parallel C/C++ with 4 threads, and f) Parallel C/C++ with 8
threads. Calculation were done on a Dell Studio XPS 435MT, Intel Quad core i7 920 CPU
2.66GHz, Vista SP2 64bit OS. Intel C++ Compiler 11.1 is used for FFTW C code and OpenMP
parallel C/C++ code compiling. Matlab Compiler 4.6 (2007a)/ 4.10 (2009a) with C/C++ math
library is used for M code compiling.

Result
Reconstruction times and speedup are shown in
Table 1, Figure 2 and Figure 3; Parallel C/C++
with 8 threads wL2 can maximize usage of the
quad core CPU resources in virtual 8 cores
mode. In addition, it is 10 times faster than the
fastest optimized Matlab program.
Reconstructed images are show in Figure 4,
with a parallel wL2 reconstruction image on the
left and a Matlab wL2 reconstruction image on
the right.

Figure 4. Reconstruction Images
Discussion and conclusion
A considerable computational speed up was achieved using multithreaded parallel processing
algorithm to accelerate the FFT bottleneck in the iterative conjugate gradient solver. The code
was an order of magnitude faster that the fastest optimized matlab code. The iterative conjugate
gradient algorithm for the reconstruction of the susceptibility maps can be further accelerated by
using a higher end workstation and it is estimated that it can be achieved in 10 second using a 32
core server for near real-time application with the ultimate goal of bringing quantitative
susceptibility mapping to clinical practice.
Ref: [1] Haacke et al, MRI:23:1-25; [2] Liu et al, MRM:61:196-204; [3] de Rochefort et al,
MRM: in press; [4] Kressler et al, IEEE TMI:2009.

769.7

621.5

407.6

301.1

60.1

38.4

0 200 400 600 800 1000

Matlab 2007a non-multithread

Matlab 2009a non-multithread

Matlab 2009a multithread

FFTW 3.2 non-multithread

Parallel C/C++ multithread x4

Parallel C/C++ multithread x8

Time /s

Time/s

Figure 2 Reconstruction Times

a b c d e f

Usage of CPU/% 13 14 32 13 50 92

Time/s 769.7 621.5 407.6 301.1 60.1 38.4

Speedup 1.00 1.24 1.89 2.56 12.81 20.04

Table 1 Reconstruction Time Comparison

1.00

1.24

1.89

2.56

12.81

20.04

0.00 5.00 10.00 15.00 20.00 25.00

Matlab 2007a non-multithread

Matlab 2009a non-multithread

Matlab 2009a multithread

FFTW 3.2 non-multithread

Parallel C/C++ multithread x4

Parallel C/C++ multithread x8

Speedup

Speedup

Figure 3 Reconstruction Speedup

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 5005

