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Introduction.  Measuring the longitudinal relaxation rate R1 is common in quantitative MRI.  The saturation–recovery (SR) method 
is a popular technique for the R1 measurement, in which the longitudinal magnetization is set to zero and then measured after a delay 
time τ (referred to as the recovery time).  The value of R1 is determined from separate measurements of at least two different recovery 
times.  An interesting, long-standing question in clinical applications is, given a limited amount of time, how the recovery times 
should be allocated to minimize the uncertainty of the measurement.  An analytical approach [1] would not be practical because of the 
increased mathematical complexity when the total imaging time is subject to a constraint.  Recently, a Monte Carlo computational 
study [2] was performed to answer this question and the results were demonstrated successfully with 3D, high resolution, whole brain 
R1 mapping.  It was found that, given the same total imaging time, acquiring two recovery times (i.e., two points) might be preferable 
to three points because the precision improvement is only marginal and may not outweigh the problems introduced by the third 
recovery time (e.g., inter-scan subject motion, rf exposure, limitation of minimal pulse spacing, data storage).  The simulation was 
performed for a few special cases needed for mapping the cerebrospinal fluid, which has long T1 (T1 ~ 4 s).  To facilitate quantitative 
MRI in clinical applications, a systematic Monte Carlo computation for the two-point SR is carried out in this work to derive general 
formulas covering a range also useful for R1-mapping the tissue. 

Methods.  The SR equation is given by M(τ) = Meq [1 − exp(−τR1)], where 
M(τ) and Meq represent the magnetization at recovery time τ and at thermal 
equilibrium, respectively.  Given two data M(τ1) and M(τ2), the SR equation 
is solved computationally to obtain R1 by using the Newton’s bisection 
algorithm.  In this work, T1 represents the true longitudinal relaxation time 
of the specimen and is used as the unit of time; R1 is the longitudinal 
relaxation rate derived from data and is expressed in units of 1/T1.  The time 
constraint on the total imaging time is specified in terms of the sum of the 
recovery times (SRT) TΣ = τ1 + τ2.  §Computer Simulation.—The 
distribution of R1 values obtained by solving the SR equation was simulated 
by using a large number of computer-synthesized data.  Fourteen signal-to-
noise ratios (SNR) ρ in [50, 64000] were considered.  The data were 
synthesized as the SR equation plus Monte Carlo noise [zero-mean, 
normally-distributed with the standard deviation (SD) determined by the 
SNR].  For each SNR, an R1 distribution (consisted of 65536 trials) was 
established for each vertex on a two-dimensional Cartesian grid of recovery-
time spacing 0.05T1; because of the symmetry, only vertexes of τ1 < τ2 are 
considered.  §Optimal Recovery Times.—For each desired SRT, the vertex 
of the smallest SD was searched and then its SD together with those of the 
two nearest neighbors on each side (if available) were included to fit a 
second order polynomial of τ1 for smoothing.  Then the ideal set of the 
recovery times (τ1, τ2 = TΣ − τ1) was determined as the one that minimizes 
the polynomial.  The search was repeated for the SRT in the interval 0.05T1 
≤ TΣ ≤ 15T1 with grid spacing of 0.25T1 to establish the optimal recovery times as functions of the SRT.  

Results and Discussion.  §Optimal Recovery Times vs. SRT.—Figure 1 shows the optimal τ1 for a few sample SNR levels and 
the curve of the least-squares fitting to all SNR levels as a whole: τ1(TΣ) = 1.566×10−2 + 2.086×10−1TΣ + 1.182×10−3TΣ2 − 
5.257×10−3TΣ3 + 6.585×10−4TΣ4 − 3.318×10−5TΣ5 + 6.182×10−7TΣ6, where 0.05T1 ≤ TΣ ≤ 15T1.  This formula also reproduces the three 
special cases in Ref. [2].  In the SNR range considered, the minimal SD occurs at the same set of the recovery times despite the SNR.  
Beyond SRT of ~8T1, lengthening the SRT merely means adding time to the longer recovery time (τ2).  §Precision of the SR 
Measurement.—Figure 2 shows samples of the SD of the R1 distribution when the recovery time setting is optimal, which can be 
described roughly by σmin(TΣ, ρ) = −1.305×10−5 − 2.386×10−7TΣ + (2.206 + 1.399TΣ−1 + 13.915TΣ−2)ρ −1, for 0.05T1 ≤ TΣ ≤ 15T1 and 
50  ≤ ρ 

 ≤ 64000.  This formula can help estimate the expected error when averaging multiple R1 measurements or determine the 
number of measurements required to reach the desired precision; an example is given in Ref. [2].  From Figs. 1 and 2, increasing the 
SRT to improve precision is effective only up to a limit (e.g., SRT ~ 8T1 for SNR of 50) and the improvement is more dramatic when 
the SRT is short.  These general formulas are expected to be useful in designing SR experiments. 
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Figure 1 Optimal recovery time as a function of sum 
of recovery times. 

Figure 2 Minimal standard deviation of the 
computer-simulated R1 distribution. 
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