
 
Fig. 1: a) Hamming-window. b) Readout gradients and c) radial 
k-space positions versus time of the different sequences. b) 
FWHM of the PSFs. b-d) Parameters used as in Fig. 2a (s. Tab. 1).  
 

Table 1: Parameters of the readout gradients for the images in 
Fig. 2 and measured SNR-values for brain tissue. 

 3DPR-PF 3DPR-SW 3DPR-UPF 
figure 2a 2b,c 2d 2a 2b,c 2d 2a 2b,c 2d 

G [mT/m] 0.98 0.89 3.57 5 4.81 14.0 5 4.81 16.9
t0 [µs] - - - 462 500 240 867 946 340

p 1 1 1 0.14 0.13 0.16 0.26 0.25 0.28
SNR 7 14 9 10 20 10 7 16 9 

 

 
 

Fig. 2: Brain 23Na-images acquired with the three different 
sequences. a) 3T images. The right lower part of the image was 
scaled to highlight to noise. The 3DPR-PF and the 3DPR-SW 
images show a reduced speckle size when compared the DA-
3DPR-PF image. b) c) 7T images, exemplary slices of 3D data set. 
d) 7T images with short readout length (TRO = 5 ms). 
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Introduction    
For 23Na-MRI large voxel sizes (2 - 5 mm)3 are required, which can lead to Gibbs’ rin-
ging artifacts that markedly degrade image quality. One approach to minimize ringing 
artifacts is the use of an appropriate apodization function (e.g., a Hamming-window). 
Due to the fast transversal relaxation time T2

* of 23Na, pulse sequences with short echo 
times like 3D projection reconstruction (3DPR) and twisted projection imaging (3D-TPI) 
(1) are favorable. It was already shown for 3D-TPI, that a sampling density that matches 
the desired filter function (sampling density weighted apodization [SW]) provides higher 
SNR compared to uniform k-space sampling with post-acquisition filtering apodization 
[UPF] (2). Although 3D-TPI acquires a given FOV within a shorter time compared to 3D 
projection reconstruction (3DPR) (3,4), the latter is often preferred due to smaller gra-
dient slew rate requirements and a less complicated implementation of the k-space tra-
jectories. Therefore, in this work a sampling density weighted apodization was imple-
mented for conventional 3DPR trajectories (3DPR-SW). 
 
Methods 
3DPR-SW 23Na-images were acquired on a 3 T and a 7 T whole body scanner (Mag-
netom TIM Trio, Magnetom 7 T, Siemens Medical Solutions, Erlangen, Germany) using 
double-resonant (23Na/1H) quadrature birdcage coils (Rapid Biomed GmbH, Rimpar, 
Germany). To use the sampling density of a Hamming-window (Fig. 1a; (5)) the gradient 
amplitude of the 3DPR-SW sequence was varied after a time t0, and a fraction p of the k-
space radius (Fig. 1b).  
The 3DPR-SW sequence was compared with two post-acquisition filtered 3DPR- 
sequences, a conventional 3DPR-sequence (3DPR-PF) and a sampling density adapted 
sequence with uniform sampling density (3DPR-UPF) (4). Depending on the sampling 
scheme k-space positions are reached at different times (Fig. 1c), and T2

* relaxation thus 
affects the point-spread functions (PSF). To quantify the T2

*-related blurring, the PSFs 
FWHM were calculated with different ratios of TRO/T2* for all three sequences.  
To evaluate the performance of the sequences, brain images were acquired with the 
following parameters: 3T-images (Fig. 2a): TE = 0.2 ms; TR = 21 ms; TRO = 16.7 ms; 
α = 55°; 32000 projections; resolution: (2.7 mm)3. 7T-images (Fig. 2b,c):  TE = 0.5 ms; 
TR = 25 ms; TRO = 20 ms; α = 55°, 32000 projections; resolution: (2.5 mm)3. 7T-images 
(Fig. 2d):  TE = 0.55 ms; TR = 9 ms; TRO = 5 ms; α = 36°, 32000 projections; 2 averages; 
resolution: (2.5 mm)3. The readout gradient parameters and the corresponding radial 
fractions p are shown in table 1. 
 
Results and Discussion 
The FWHM of the PSF are shown in Fig. 1d) for all three sequences. The 3DPR-UPF-
sequence shows the smallest FWHM, and thus only minor blurring artifacts are expected, 
which is in good agreement with the in-vivo brain images (Fig. 2). SNR values for brain 
tissue are shown in table 1. The 3DPR-PF sequence shows the lowest SNR-values and is 
most prone to artifacts from B0-inhomogeneities. The 3DPR-SW sequence has the 
highest SNR-values and shows a smaller “noise speckle size” compared to the 3DPR-
UPF sequence (Fig. 2a).  
In regions with B0-inhomogenieties such as the eyes (red arrow) and the paranasal 
sinuses (blue arrow) (Fig. 2c), blurring and distortions degrade image quality in 
particular for the 3DPR-PF-sequence. Here, the 3DPR-UPF-sequence shows the best 
results, since k-space is traversed more rapidly (Fig. 1c) than with 3DPR and 3DPR-SW 
so that less phase is accumulated for a given k-space position. At shorter readout length 
(TRO = 5 ms) these artifacts are negligible for all three sequences (Fig. 2d) and slightly 
higher SNR-values for the 3DPR-SW-sequence were measured (Tab. 1).  
Both 3DPR-UPF and 3DPR-SW show a much better performance than the conventional 
3DPR-PF. Comparing the 3DPR-SW- and the 3DPR-UPF-sequence, the SNR-benefits of 
the 3DPR-SW approach must be weighed against the better artifact-behavior of the post-
filtered technique. For a short readout time of TRO = 5 ms, B0-inhomogeneity artifacts 
and blurring are negligible and the use of the 3DPR-SW-sequence is beneficial. 
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