
Fast Regridding using LSQR on Graphics Hardware

G. Buchgraber1, F. Knoll2, M. Freiberger2, C. Clason3, M. Grabner1, and R. Stollberger2
1Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria, 2Institute of Medical Engineering, Graz University of Technology, Graz,

Austria, 3Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria

Introduction: Iterative image reconstruction methods have become increasingly popular for parallel imaging or
constrained reconstruction methods, but the main drawback is the long reconstruction time. In the case of non-
Cartesian imaging, resampling of k-space data between Cartesian and non-Cartesian grids has to be performed in
each iteration step. Therefore the gridding procedure tends to be the time limiting step in these reconstruction
strategies. With the upcoming parallel computing toolkits (such as CUDA [1]) for graphics processing units
(GPUs) image reconstruction can be accelerated in a tremendous way [2,3]. In this work, we present a fast GPU
based gridding method and a corresponding inverse-gridding procedure by reformulating the gridding procedure as
a linear problem with a sparse system matrix (see Fig.1), similar to the approach in [4].

Methods: In MR literature the term “gridding” is often used as a synonym for a convolution interpolation. This
process can be easily formulated as a problem of solving a set of linear equations

bxA
vv = , (1)

where x and b are vectors containing the uniform and non-uniform data samples, and A is a matrix describing the
relationship between them. Because of exclusive local relationships between non-uniform and uniform data
samples, the matrix A is large and sparse, and therefore we use LSQR [5] as a numerical method for solving this
set of linear equations. LSQR is specifically tailored to sparse matrices and has, in comparison to other
iterative solvers like PCG (preconditioned conjugate gradient method), advantages regarding
complexity and numerical stability in fixed-point arithmetic. During its iterations, LSQR performs
several basic linear algebra operations, including sparse matrix-vector multiplication, vector addition
and scaling, as well as scalar multiplication of two vectors. In our implementation all of these
operations are done in parallel on the GPU. For a fast and efficient parallel computation of sparse
matrix-vector products, the matrix A is arranged in a special memory layout, considering coalesced
thread access and memory bandwidth, as recommended in [6]. For optimized GPU implementations,
special care must been taken to ensure that the GPU’s texture cache is used efficiently because the
sample positions are usually irregularly distributed (because they lie on e.g. radial trajectories). We
propose to solve this by reorganisation of the samples in vector b, so that samples that are close to each
other will be processed in parallel or at least consecutively. Several two-dimensional reordering
strategies with a good locality preserving behaviour were investigated, such as space-filling curves like
the Hilbert curve [7] or the Z-order curve [8] and some line-by-line methods shown in Fig.2.
 LSQR is used for the gridding step (computing vector x) and the inverse-gridding procedure
(computing vector b) uses a sparse matrix-vector multiplication. The matrix A can be defined arbitrarily
and represents the used regridding kernel. The well known Kaiser-Bessel kernel and the simple strategy
of bilinear interpolation were used in this work. In the case of bilinear interpolation, the sparse matrix-
vector multiplication, utilized in the inverse-gridding step, can be replaced by a native GPU texture
interpolation which additionally benefits from the optimized hardware implementation. Concerning
LSQR, the total number of iterations depends on the chosen stopping criteria, which are usually the
absolute or relative tolerance, given by a threshold for the L2-norm of the residual, and the maximum
number of iterations, in case the desired accuracy could not be achieved.

Results and Discussion: Performance tests were carried out using Cartesian complex k-space data of
different image size, with a sparse matrix A that represented simple bilinear interpolation. Inverse
Gridding with the proposed method was used to interpolate data on radial trajectories. The following
matrix sized were investigated: Cartesian: 256x256 → Radial: 300 spokes with 256 sample points;
Cartesian: 512x512 → Radial: 512 spokes with 512 sample points; Cartesian: 1024x1024 → Radial:
1024 spokes with 1024 sample points. The GPU implementation (using single precision) of the
proposed gridding algorithm with LSQR outperforms the built-in Matlab (The MathWorks, Natick,
MA) CPU implementation by factors of 25 to 31. With the used memory layout for A, even matrices
with size of 1024²×1024² could be applied without decreases in speedup. Considering the inverse-
gridding procedure, the use of native texture interpolation accelerated this step with an additional
speedup of approximately 10 in comparison to sparse matrix-vector multiplication. For the 1024x1024
matrix, GPU inverse gridding computation times were 4.2ms with sparse matrix vector multiplication
and 0.409ms with native texture interpolation. However, it should be noted that for applications in
iterative image reconstruction methods, the regridding and the inverse gridding step have to be
performed in each iteration. With our method, the time limiting computation is the LSQR based
regridding step which takes roughly 1000 times longer (6s in comparison to 4.2ms for the case of
inverse gridding with sparse matrix vector multiplication). The effect of reorganisation strategies
(Fig.2) was evaluated with Cartesian k-space test data of size 1024x1024. Different amounts of
randomly distributed positions within the boundaries of the source data set were selected. Interpolation
was then carried out before and after reordering of interpolation positions. The experimental results of
the proposed non-uniform sample reorganisation strategies, evaluated on an Nvidia GeForce 280, are
displayed in Fig.3. Speedups from 2 to 7 were observed in comparison to conventional, unordered data
positions in b.
In conclusion, the proposed GPU regridding approach yields significant speedups in computation time.
This will be of great benefit in iterative image reconstruction methods for parallel imaging or
constrained reconstruction strategies.

References: [1] NVIDIA Corporation, NVIDIA CUDA – Programming Guide (2009), [2] Hansen et al., MRM 59: 463-468 (2008), [3] Sorensen et al., IEEE Trans.
Med. Imag. 27(4): 538-547 (2008), [4] D. Rosenfeld, MRM 40(1):14-23 (1998), [5] Paige et al., ACM Trans. Math. Softw. 8:43-71 (1982), [6] M. Liebmann, Efficient
PDE Solvers on Modern Hardware with Applications in Medical and Technical Sciences, PhD Thesis (University of Graz, 2009), [7] Hilbert, Ueber die stetige
Abbildung einer Line auf ein Flaechenstueck, Mathematische Annalen 38:459-460 (1891), [8] Morton, A computer oriented geodetic data base; and a new technique in
file sequencing. IBM technical report, IBM Ltd., (1966)

(a) (b)

 (c) (d)

Fig. 2: Reordering of non-uniform samples along:
(a) Hilbert curve (2nd order)
(b) Z-order curve (2nd order)
(c) Line-By-Line
(d) Blocked Line-By-Line with alternating row directions

Matrix size Computation time

Radial Cartesian CPU GPU Speedup

300[256] 256×256 7.897s 0.313s 25

512[512] 512×512 39.634s 1.249s 32

1024[1024] 1024×1024 184.456s 6.024s 31

Tab. 1: Regridding computation times: Matlab LSQR
(CPU) vs. GPU LSQR performance results (abs. tolerance:
1e-5, max. iterations: 1000) evaluated on Nvidia GeForce
8800 GTX connected to a host x86/Linux system.

Fig. 3: Evaluation of GPU texture 2D interpolation
performance. The interpolation time of randomly
distributed sample positions is compared with the same
positions reordered along the patterns suggested in Fig.2.

Fig. 1: Position of acquired data samples on
Cartesian (a) or radial (b) sampling
trajectories and definitions of corresponding
GPU regridding operations.

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 4959

