T2-Weighted Spin Echo Pulse Sequence That is Sensitive to Restricted Diffusion ## Z. Sun¹, and R. Bartha² ¹The Ohio State University, Columbus, Ohio, United States, ²Robarts Research Institute, London, Ontario, Canada **Introduction:** T₂-weighting generated by the spin echo (SE) pulse sequences utilizing selective adiabatic full passage (AFP) pulse trains has been used to generate microscopic susceptibility contrast in Human brains [1]. The contrast mechanism is ascribed to the spin diffusion weighting in the presence of local magnetic susceptibility gradients [1]. In a similar approach, phantom study has demonstrated that enhanced diffusion weighting can be achieved by incorporating selective AFP pulse trains into a diffusion weighted SE sequence [2]. Theoretical derivation [2] indicated that selective AFP pulse trains can increase diffusion weighting when incorporated into a conventional Stejskal-Tanner (S-T) diffusion weighted SE sequence [3]. In this study, diffusion weighting generated by the AFP pulse trains in a conventional T₂-weighted SE sequence without using diffusion pulsed gradients was investigated experimentally on a multi-compartment and multi-medium phantom for probing restricted diffusion. Methods: Imaging experiments were performed on an 11.7 T Bruker Avance 500 system with a Bruker gradient coil using a birdcage transmit/receive RF coil (ID = 2.8 cm). A SE sequence was modified by incorporating two selective AFP pulse trains separated by a time delay (τ) at the symmetric positions of a hermite refocusing pulse ($T_p=1.3$ ms, BW=2.7 kHz). AFP pulse trains were constructed using n hyperbolic secant (HS₁) AFP pulses with single- and alternate-frequency sweep (SFS and AFS) directions in adjacent AFP pulses, respectively (R-factor = 20, $T_p = 3.5$ ms, $B_1(max) = 2.6$ kHz, n = 2, 4). A phantom consisted of a plastic tube (ID = 1.5 cm) and three glass vials (ID = 5 mm) was bounded together to form four compartments. The plastic tube was filled with a mixture of 10 micron ORGASOL polymer beads and 50 µM MnCl₂ dissolved in 5% agar and formed compartment 1 (ROI-1) (Fig.1). The three vials contained 50, 100, and 150 μM MnCl₂ dH₂O solutions and formed compartments 2 to 4 (ROI-2 to ROI-4), respectively. Single slice images were acquired from the phantom by varying TE using the customized SE sequence containing nAFP-SFS/AFS pulses for apparent T₂ measurements (TE = 26-46/40-60 ms, $\tau = 14-37/21-41$ ms for n = 2/4, TR = 2 s, FOV = 40 x 40 mm², Matrix = 128 x 128, slice thickness = 5 mm, 4 ave, 2 dummy scans, MLEV-4 phase cycling, scan time = 17m4s). T₂ measurements were also performed using a Bruker CPMG sequence (num echoes = 8, Eff. TE = 10 - 80 ms in steps of 10 ms, other parameters the same as above) and a conventional SE sequence (TE = 10-60 ms in steps of 10 ms, other parameters the same). Apparent T_1 time constants for each compartment of the phantom were measured using a balanced SSFP sequence from Bruker for avoiding T₁ saturation in the T_2 and diffusion measurements (TE/TR = 2/4 ms, scan repetition time = 10 s, TI = 79.5 ms, segment time w/o separation = 128/64 ms, num frames = 60, num segment = 8, 10 dummy scans, alpha 2 = 0.5xTR, scan time = 5m20s, other parameters the same). The apparent diffusion coefficient (ADC) values were acquired for the phantom using the standard S-T DWI pulse sequence from Bruker (TE/TR = 20/2000 ms, δ = 5 ms, Δ = 8.52 ms, b-value = 57 - 472 s/mm² steps of 46 s/mm², 1 ave, scan time = 4m16s, other parameters the same). Apparent T2 and ADC values were calculated from the logarithm of the average signal intensity (ln(SI)) as a function of TE and b-value, respectively. Apparent T₁ values were obtained using the Bruker IrTruFispMap macro. **Results:** The measured apparent T_1 , T_2 , and ADC values are listed in Table 1. The apparent T_2 in ROI-1 measured using the nAFP-SFS/AFS-SE sequence is significantly greater than those in other compartments. In contrast, the apparent T_2 in ROI-1 measured using the conventional SE and CPMG sequences is either significantly lower or very close to that in ROI-2, respectively. The apparent T_2 in ROI-2 to 4 is decreased as n is increase from 2 to 4, whereas the apparent T_2 in ROI-1 is almost unchanged with n. For the same n, the apparent T_2 generated by the AFS pulse train in ROI-4 is significantly lower than that of the SFS pulse train. The ADC value in ROI-1 is significantly lower than those in ROI-2 to 4. T_2 -weighted images are shown in Figure 1 for contrast effect comparison. Table 1. The measured apparent T₁, T₂, and ADC values for the phantom | ROI | T_2 (ms) | | | | | | | 150 (103 21) | |-----|----------------|----------------|----------------|----------------|----------------|----------------|------------------|---------------------------------------| | | 2SFS | 2AFS | 4SFS | 4AFS | SE | CPMG | $T_1(ms)$ | ADC $(10^{-3} \text{ mm}^2/\text{s})$ | | 1 | 14.1 ± 0.8 | 14.1 ± 0.2 | 14.6 ± 0.9 | 14.2 ± 1.2 | 30.6 ± 1.1 | 37.2 ± 1.2 | 370.9 ± 11.8 | 1.66 ± 0.03 | | 2 | 9.2 ± 0.2 | 9.0 ± 0.1 | 8.7 ± 0.1 | 8.3 ± 0.1 | 41.8 ± 0.9 | 35.8 ± 0.8 | 384.3 ± 8.1 | 2.44 ± 0.02 | | 3 | 8.2 ± 0.1 | 7.8 ± 0.2 | 7.0 ± 0.3 | 7.0 ± 0.1 | 25.9 ± 0.4 | 24.6 ± 0.6 | 243.8 ± 3.4 | 2.47 ± 0.03 | | 4 | 8.2 ± 0.6 | 6.8 ± 0.3 | 7.1 ± 0.3 | 5.7 ± 0.2 | 20.1 ± 0.7 | 20.3 ± 0.6 | 178.3 ± 3.0 | 2.65 ± 0.23 | Figure 1. Phantom images collected using 4AFP-AFS/SFS-SE (A/B), CPMG (C), and SE (D) sequences at TE = 55, 80, and 60 ms, respectively. **Discussion:** Experimental results from the T₂ and diffusion measurements demonstrate that the nAFP-SFS/AFS-SE sequence generates T₂-weighted contrast that is sensitive to restricted diffusion in the medium in comparison to those of the conventional SE or CPMG sequences. **References:** [1] B. Bartha, et al, Magn. Reson. Med. 47 (2002) 742-750. [2] Z. Sun, et al, J. Magn. Reson. 188 (2007) 35-40. [3] E.O. Stejskal, et al, J. Chem. Phys. 42 (1965) 288-292.