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Introduction 
Formulation of spatial RF pulse design in a gradient-dependent rotating frame is introduced. This work was motivated by the need for a fast RF 
design algorithm for use in a high-field parallel transmit system where dielectric effect creates transmit field distribution with significant patient-
dependent variability. The new reference frame, called a “local rotating frame”, transforms away any (known) longitudinal magnetic fields present in 
the problem, and thereby greatly simplifies analytical and numerical calculations of spatial RF pulse response in a single-coil or a parallel transmit 
system. We demonstrate the application of the new method in analytical and numerical solutions of the Bloch equations in the spinor domain. 
Theory and Methods 
Conventionally, spin dynamics in MRI is formulated in a frame rotating at a fixed Larmor frequency 
determined by the static field. We define a local rotating frame as a frame which has an additional 
transverse phase –φ (r, t) with respect to the conventional frame, where φ (r, t) = 
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respectively. In such a frame, the transverse magnetization and the complex RF field appear as 
Mxy(r, t) = Mxy,c(r, t) e iφ (r, t), and B(r, t) = Bc(r, t) e iφ (r, t), where we used subscript ‘c’ to denote 
quantities in the conventional frame. Additionally, the Cayley-Klein parameters defining three-
dimensional rotation transform as α(r, t) = αc(r, t) e−iφ (r, t)/2, β(r, t) = βc(r, t) e−iφ (r, t)/2. The Bloch 
equations in the new variables lack any longitudinal field, and are considerably simpler. In the 
spinor domain, the equations in the absence of relaxation are:  

dα*/dt = (iγ /2) B(r, t) β(t),    dβ/dt = (iγ /2) B*(r, t) α*(t)                                (1) 
with the initial condition of α(0) = 1, β(0) = 0. Analytical integration of Eqs. (1) from t = 0 to T can 
be done in a series expansion, α*(T) = α *(0)(T) + α *(2)(T) + ..., β(T) = β (1)(T) + β (3)(T) + ... where 
successive terms are smaller than the preceding term by order of (θt /2)2, where θt  is the tipping 
angle in radian. The Linear Class Large Tip Angle pulse theory [1] was formulated based on the first 
two terms in the expansion. Remarkably, the next term α*(2)(T) can be calculated in a closed form 
for a one-dimensional selective RF pulse. This term determines the residual dephasing following 
slice-selective excitation. For a rectangular slice profile the result is, 
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where zFW is the slice thickness, and dφres/dz is the phase winding along the slice direction after a 
usual half-area gradient rewinder is applied. The new frame transformation is particularly beneficial 
when multiple RF fields are simulated for pre-determined gradient fields [2]. In such a case, the RF 
simulation can follow the workflow depicted in Fig. 1. Since the gradient field is typically much 
larger than the rf field for the majority of the voxels, analytical transformation to separate gradient 
fields away from Bloch simulation provides substantial improvement in the robustness of the 
numerical integration, allowing a larger step size to be taken. We tested the efficiency of this method 
for a simulated 8-coil parallel transmit system with spiral gradient for reduced-FOV excitation.  
Results and Discussion 
Figure 2 shows residual phase slope from Eq. (2) compared with that obtained from linear fitting to 
the simulated magnetization profile (inset). The RF pulse used was a Hamming-windowed sinc 
function with time-bandwidth product of 12. Eq. (2) accurately predicts the residual phase, capturing 
initial quadratic dependence of the phase slope on the tip angle. Figure 3 shows the speed gain 
(right) and relative error (left) of Bloch simulations in local rotating frame as a function of the 
integration step size. The simulation was performed on eight independent RF waveforms calculated 
by linear method [3] based on a 6-turn spiral k-trajectory for 90° excitation of a rectangular FOV. 
Compared are simulations performed by step-by-step rotation at 4n-microsecond interval in 
conventional frame (method 1), and by linear advancement of each time step (Euler’s method) in 
local rotating frame (method 2). Method 1 was considered exact for n = 1, and the error was 
calculated in terms of maximum tip angle deviation referenced to this case. Despite the simplicity of 
Euler’s method integration, Method 2 nearly matches the accuracy of Method 1 for n < 5, with 
consistent speed advantage of about factor of 3.   

 

Figure 1. Iterative RF design workflow 
using local rotating frame transform 
 
 

Figure 2. Phase winding from Eq. (2) (solid 
and dashed lines) compared with Bloch 
simulation (square). Inset is the slice profile 
for θt = 90°. 

Figure 3. Bloch simulation performance as a 
function of the step size, dt = n × 4 [μs] 

Conclusion 
We have described a theoretical framework for spatial RF pulse design using local rotating frame transformation. The method simplifies analytical 
and numerical calculations of the RF pulse response, and is straightforward to implement in existing RF design methods. New theoretical insights 
derived from this method in spatial RF pulse design are detailed in upcoming publication [4]. We believe that the Bloch simulation method outlined 
here could streamline numerical calculation workflow in iterative RF optimization, with substantial gain in calculation speed.  
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