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INTRODUCTION: In the design of multi dimensional spatially selective RF pulses particular attention must be paid to the local 1 gram Specific Absorption Rate (1g-
SAR). Employing multi-transmit RF systems allows an additional degree of freedom which can be exploited to design RF pulses with lowest maximal 1g-SAR over the
whole spatial domain. While the problem of total (global) SAR minimization can be solved quite easily[1], here we present a new method which solves the problem of
local SAR optimization in a limited amount of time. For this purpose innovative mathematical techniques are applied to this problem.

METHODS AND MATERIALS: After the discretizing the solution of the Bloch Equation under the small flip angle approximation, the problem is to find an optimal
numerical solution to the least squares problem argmin{||Ax-b|* } (1) where the matrix A is the discretization of the integral operator as in [2], x and b are vectors
corresponding to the requested RF pulses and desired magnetization, respectively. Due to the typically high condition number of A, a regularization term must be added
to obtain a reliable solution of (1) and the problem becomes argmin {||Ax-b|* +A|[x|[*} (2). The weight on |[x|[* has a beneficial effect also for SAR optimized solutions,
since the total SAR is proportional to the squared solution norm (see [3]). However, the local 1 gram SAR is of importance, since the following constraint must be
fulfilled: max,1g-SAR(r) < SAR ., with r € ROI (the 3D spatial domain). We aim to lower the max,1g-SAR(r) for x (denoted by max-1g-SAR(x)) while maintaining
a good accuracy of the Bloch verified magnetization profile (denoted by bloch(x)). Analogously to [4] we construct local SAR operators S, such that
|Sex|[*=w(r)|[F,Zx|*=SAR(r). F, are sparse, block-diagonal matrices describing the E-fields, Z a permutation matrix and hence S, are sparse, block-diagonal matrices
and w(r)=c (r)(2p (r))"". To construct a 1g-SAR operator we must average SAR(r) over a 1 gram cube around r. This is done by computing = chol [Z,-(w(r)F,HFr) 7]
with j€ Jan index set such that ¥,6 (r;)=1g and chol the function returning the cholesky factor of a matrix. Then we have: 1g-SAR(r)=|| x|>. We are interested in
the solutions of (2) which minimize max,|| x| The approach we follow is to compute first an optimal solution x® to (2). To solve (2) we apply the multi-shift
mCGLS algorithm derived in [5]. After choosing a set of values A& A, mCGLS computes each solution X, simultaneously. The optimal solution can then be found by
plotting the L-curve. This solution has a lowest norm and thus optimal w.r.t. total SAR. We then compute the highest local values of 1g-SAR(r) obtained by x®. The
strategy is to lower those high values of 1g-SAR(r) and to better distribute the 1g-SAR. We add an extra weighting term to (2) and we obtain the following modified

problem: arg min {|| Ax-b | +1 || x|’ +7(e, | S, x I +e, || S, x P+t || S, x )} (3) where r; denotes a voxel from the R top values of 1g-SAR(x®). To

solve (3) we apply again the multi-shift mCGLS and adapt it to the case of two regularization parameters, A€ T" and n€ Z . During the iterative algorithm, the weights
0= x|’ are computed every n steps. In this way, we allow more freedom to the lower 1g-SAR values and less to the higher values to homogenize the 1g-SAR of the
R reference voxels. The two matrix-vector multiplications employing the matrix [A" " ... &' 1" required for each iteration step in mCGLS, can be carried out in
an efficient way due to the sparse structure of the matrices: this fact, together with the speed up achieved by mCGLS determine a fast computation of the whole
procedure. The computations and simulations are carried out with MATLAB 7.4.0 on a Intel Core 2 Duo processor T3400 2.16 GHz. RESULTS: We want to find the
RF pulses for the desired magnetization (flip angle 15°) on a 2D domain corresponding to the central slice of human head (see figures 1 and 2). We employ the E-field

maps, B! maps and conductivity maps over the whole 3D spatial domain (715k voxels) obtained by FDTD simulations for a 12-channels 7 T (300MHz) head coil
loaded with the Hugo Model. We choose a spiral-in k-space trajectory constrained by the maximum Gradient amplitude and Slew rate and 3-fold radial undersampling.
This results in a pulse length of 2.0 ms. The dimensions of A are 641 x 3756. We set A ={10"*, 10>7, 10*%,... 10"7, 10*} (25 values) and solve (2) by running
mCGLS. The best solution x? (error from bloch (x*)=0.130) is found on the L-curve. We compute 1g-SAR(x®) over the 3D ROI and find max-1g- SAR(x?)=1.49
[W/kg]. We take the 10 voxels (R=10) corresponding to the 10 highest values of 1g-SAR and, after constructing ;, j=1...10, we solve (3) setting Z ={107, 10>7%, 10"
2301077, 10"} (9 values) and updating the weights a;jevery 10 iteration steps (n=10). Note that the solution now depends on two parameters. The obtained solution
x% corresponding to the largest allowed value of 1 was found to be as accurate as x® (error from b1loch (x*)=0.126). The resulting 1g-SAR(x")) was found to be max-
1g-SAR(x)=1.15 [W/kg]: a reduction for max-1g-SAR of 23% w.r.t. X?. To see how the local SAR is better distributed look at figure 3 where the 100 highest 1g-
SAR(r) values are plotted for both solutions: the local SAR optimized solution gives rise to a more homogeneous distribution. This fact is evident from an in-slice plot
of the 1g-SAR (see figure 4). The two RF waveforms and the simulated magnetization profile are displayed in figures 5 and 6. The numerical solution of (2) and (3)
takes in total 3 minutes. The construction of the ; matrices takes 10 seconds, the computation of 1g-SAR over the 3D whole spatial domain takes about 9 minutes (this
step is computed twice, once for x® and once for xX*. CONCLUSIONS: An algorithm to quickly design local 1g-SAR optimized RF pulses was described. The multi-
shift algorithm mCGLS applied to a SAR distribution homogenization strategy makes a reduction of the maximum 1g-SAR of about 23% in a relatively short time
possible, keeping in mind the performance limitation of MATLAB programming environment. Implementation of the algorithm in the C programming language and
parallelization of the computations will speed up the whole process to achieve real time computations. References: [1] Lattanzi et al. Magn. Reson. Med. 61:315-334
(2009) [2]Grissom W. et al, Spatial Domain Method for the design of RF Pulses in Multicoil Parallel Excitation Magn. Reson. Med. 56, 620-629 (2006) [3]U. Katscher
and P. Bornert Parallel RF transmission in MRI NMR Biomed. 19: 393-400 (2006);[4] A.C. Zelinski et al. Designing RF pulses with optimal specific absorption rate
characteristics and exploring excitation fidelity, SAR and pulse duration tradeoffs Proc. Intl. Soc. Mag. Reson. Med. (2007);
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