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INTRODUCTION: In the design of multi dimensional spatially selective RF pulses particular attention must be paid to the local 1 gram Specific Absorption Rate (1g-
SAR). Employing multi-transmit RF systems allows an additional degree of freedom which can be exploited to design RF pulses with lowest maximal 1g-SAR over the 
whole spatial domain. While the problem of total (global) SAR minimization can be solved quite easily[1], here we present a new method which solves the problem of 
local SAR optimization in a limited amount of time. For this purpose innovative mathematical techniques are applied to this problem. 
METHODS AND MATERIALS: After the discretizing the solution of the Bloch Equation under the small flip angle approximation, the problem is to find an optimal 
numerical solution to the least squares problem argmin{||Ax-b||2 } (1)  where the matrix A is the discretization of the integral operator as in [2], x and b  are vectors 
corresponding to the requested RF pulses and desired magnetization, respectively. Due to the typically high condition number of A, a regularization term must be added 
to obtain a reliable solution of (1) and the problem becomes argmin{||Ax-b||2 +λ||x||2} (2). The weight on ||x||2 has a beneficial effect also for SAR optimized solutions, 
since the total SAR is proportional to the squared solution norm (see [3]). However, the local 1 gram SAR is of importance, since the following constraint must be 
fulfilled: maxr1g-SAR(r) ≤ SARmax with r ∈  ROI (the 3D spatial domain). We aim to lower the maxr1g-SAR(r) for x (denoted by max-1g-SAR(x)) while maintaining 
a good accuracy of the Bloch verified magnetization profile (denoted by bloch(x)). Analogously to [4] we construct local SAR operators Sr such that 
||Srx||2=w(r)||FrZx||2=SAR(r).   Fr are sparse, block-diagonal matrices describing the E-fields, Z a permutation matrix and hence Sr are sparse, block-diagonal matrices 
and w(r)=σ (r)(2ρ (r))-1. To construct a 1g-SAR operator we must average SAR(r) over a 1 gram cube around r. This is done by computing Sr≡ chol[∑j(w(r)Fr

HFr) Z] 
with j∈J an index set such that ∑jσ (rj)=1g and chol the function returning the cholesky factor of a matrix. Then we have: 1g-SAR(r)=||Srx||2.  We are interested in 
the solutions of (2) which minimize maxr||Srx||2. The approach we follow is to compute first an optimal solution x(2) to (2). To solve (2) we apply the multi-shift 
mCGLS algorithm derived in [5]. After choosing a set of values λ∈  Λ , mCGLS computes each solution xλ simultaneously. The optimal solution can then be found by 
plotting the L-curve. This solution has a lowest norm and thus optimal w.r.t. total SAR. We then compute the highest local values of 1g-SAR(r) obtained by x(2). The 
strategy is to lower those high values of 1g-SAR(r) and to better distribute the 1g-SAR. We add an extra weighting term  to (2) and we obtain the following modified 
problem:
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solve (3) we apply again the multi-shift mCGLS and adapt it to the case of two regularization parameters, λ∈Γ and η∈Ξ . During the iterative algorithm, the weights 
αj≡||Srjx||2 are computed every n steps. In this way, we allow more freedom to the lower 1g-SAR values and less to the higher values to homogenize the 1g-SAR of the 
R reference voxels. The two matrix-vector multiplications employing the matrix [AT    Sr1

T  …  SrR
T  ]T  required for each iteration step in mCGLS, can be carried out in 

an efficient way due to the sparse structure of the  Sr matrices: this fact, together with the speed up achieved by mCGLS determine a fast computation of the whole 
procedure. The computations and simulations are carried out with MATLAB 7.4.0 on a Intel Core 2 Duo processor T3400 2.16 GHz. RESULTS: We want to find the 
RF pulses for the desired magnetization (flip angle 15o) on a 2D domain corresponding to the central slice of human head (see figures 1 and 2). We employ the E-field 

maps, 1B+
 maps and conductivity maps over the whole 3D spatial domain (715k voxels) obtained by FDTD simulations for a 12-channels 7 T (300MHz) head coil 

loaded with the Hugo Model. We choose a spiral-in k-space trajectory constrained by the maximum Gradient amplitude and  Slew rate and 3-fold radial undersampling. 
This results in a pulse length of 2.0 ms. The dimensions of A are 641 x 3756. We set Λ ={10-4, 10-3.75, 10-3.50,… 101.75, 102} (25 values)  and solve (2) by running 
mCGLS. The best solution x(2)  (error from bloch (x(2))=0.130) is found on the L-curve. We compute 1g-SAR(x(2)) over the 3D ROI and find max-1g- SAR(x(2))=1.49 
[W/kg]. We take the 10 voxels (R=10) corresponding to the 10 highest values of 1g-SAR and, after constructing Srj , j=1...10, we solve (3) setting Ξ ={10-3, 10-2.75, 10-

2.50,… 10-.75, 10-1} (9 values) and updating the weights αj every 10 iteration steps (n=10). Note that the solution now depends on two parameters. The obtained solution 
x(3) corresponding to the largest allowed value of η was found to be as accurate as x(2) (error from bloch (x(3))=0.126). The resulting 1g-SAR(x(3)) was found to be max-
1g-SAR(x(3))=1.15 [W/kg]: a reduction for max-1g-SAR of 23% w.r.t. x(2). To see how the local SAR is better distributed look at figure 3 where the 100 highest 1g-
SAR(r) values are plotted for both solutions: the local SAR optimized solution gives rise to a more homogeneous distribution. This fact is evident from an in-slice plot 
of the 1g-SAR (see figure 4). The two RF waveforms and the simulated magnetization profile are displayed in figures 5  and 6.  The numerical solution of (2) and (3) 
takes in total 3 minutes. The construction of the Srj matrices takes 10 seconds, the computation of 1g-SAR over the 3D whole spatial domain takes about 9 minutes (this 
step is computed twice, once for x(2) and once for x(3). CONCLUSIONS: An algorithm to quickly design local 1g-SAR optimized RF pulses was described. The multi-
shift algorithm mCGLS applied to a SAR distribution homogenization strategy makes a reduction of the maximum 1g-SAR of about 23% in a relatively short time 
possible, keeping in mind the performance limitation of MATLAB programming environment. Implementation of the algorithm in the C programming language and 
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