
Fig. 2. RMSE (A) and mean noise (B) for GRAPPA images of the phantom with 
different acceleration factor and number of ACS lines. 

 
Fig. 3. RMSE (A) and mean noise (B) for GRAPPA images of a human brain with 
different acceleration factor and number of ACS lines. 

 
Fig. 1. Images reconstructed with additive noise level 0 and 6 for a phantom (A 
and B) and human brain (C and D) with AF 2 and 48 ACS lines.
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Introduction Parallel imaging[1,2] has been widely used in MRI for scan time reduction and spatial resolution improvement. Concomitant with these 
advantages is the potential for higher noise and artifact levels. Various regularization techniques have been proposed to mitigate this problem[3-4]. In 
this work, a new regularization method, namely adding noise to GRAPPA auto-calibration signal (ACS) data, and its application to fMRI are 
examined.    
Theory GRAPPA algorithm uses the least square fitting to calculate the weights w from the equation wST ACSACS = , where TACS and SACS denote the 
target and source matrix in the ACS area. The weights w can be solved via singular value decomposition (SVD) of the matrix SACS. When the 
condition number of SACS is high, the noise in the acquired data can be significantly amplified due to the Pseudo-inverse. Conventionally, truncated 
SVD or Tikhonov regularization is used to reduce the condition number. An alternative approach is to add noises to the ACS data. The additive noise 
can increase the smallest singular value while having a negligible effect on the largest singular value, resulting in a lower condition number for the 
equation. The goal of this work is to investigate the relationship between the additive ACS noise level and the resulting temporal SNR for fMRI 
signals. 
Methods A gel phantom and a human subject (at rest with eyes closed) were scanned on a Siemens TIM trio scanner using a 32-channel head coil 
(Siemens Medical Solutions, Erlangen, Germany). EPI sequence was run for 100 repetitions. FOV = 220 mm, TR/TE = 2000/54, matrix = 128×128, 
one slice for the phantom scan and three slices for the human scan. Raw data were saved for off-line reconstruction. The first time frame was used as 
the reference scan for GRAPPA. GRAPPA reconstruction of acceleration factor (AF) 2, 3, and 4 with 48 and 124 ACS lines were simulated. Twelve 
neighbors were selected in computing the GRAPPA weights, and complex Gaussian noise was added to the ACS lines to lower the condition number 
of SACS.  Then the weights were applied to the manually under-sampled k-space data of subsequent time frames to reconstruct the full k-space. 
Various levels of noise with an increment of half of the scanner noise calculated from the phantom data were tried in the simulation to fully 
investigate the effect of additive noise.  The root mean square error 
(RMSE) between the reconstructed k-space and true k-space was 
approximated as the error between the acquired full k-space and the 
reconstructed full k-space. The temporal noise is computed for each 
voxel as the standard deviation of its time series after quadratic 
detrending. Temporal noise for the human subject is only computed 
on the middle slice after motion correction performed in SPM5 
(Wellcome Department of Cognitive Neurology, London, UK).  
Results Fig. 1 presents images of the phantom and human brain for 
AF 2 and 48 ACS lines, with different noise level in the computation of the GRAPPA weights. It can be seen that the images reconstructed with noise 
level 0 are noisier than the images reconstructed with noise level 6. 
Fig. 2 plots the simulation results of RMSE and mean temporal 
noise at different additive noise level from the phantom data. In 
general, RMSE is minimized at a certain additive ACS noise level 
while the temporal noise continues to drop with more additive ACS 
noise. In addition, the effect of additive ACS noise is affected by 
number of ACS lines. There is almost no gain for RMSE if the 
number of ACS lines is close to the matrix size of phase encoding 
because the least square error is already minimized for the ACS 
lines. The gain in SNR is also diminished for 124 ACS lines 
although the trend remains the same as for 48 ACS lines.  Fig. 3 
shows the results from the human subject. Since physiological noise 
may serve as the additive noise, RMSE is near its minimal at noise 
level 0. Adding Gaussian noise still helps to improve the temporal 
SNR, but the increase is much less than that in the phantom. This is 
because, on one hand, the physiological noise already helps to lower 
the condition number of the source matrix, and on the other hand, 
the GRAPPA weights only affect the scanner noise.   
Discussion We have demonstrated that adding noise to the ACS 
lines can potentially reduce image artifacts and g-factor in 
GRAPPA images. Furthermore, by adding more noise, it is possible 
to pursue higher SNR at the cost of image fidelity, and therefore 
may be useful for GRAPPA in fMRI. The effect of this facilitation 
may depend on the SNR of the image, the acceleration factor, and 
the number of ACS lines.  
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