
Figure 1: In GRAPPA, k-space data are 
correlated after interpolation (solid and dashed 
lines). Noise correlation due to overlapping of 
interpolation kernels can also be determined by 
GRAPPA interpolation weights. 

Figure 2: (a) Original image; (b) 4-fold jittered sampling 
GRAPPA reconstruction; (c) Reconstruction by proposed 
method; (d) 1D profiles of the marked line in (b) and (c). 

Figure 3: Simulation by undersampling data from an extremity exam. 
jittered sampling with 2x2 and 2x3 acceleration was applied. 
Reconstruction results of GRAPPA and the proposed methods (using 
variance information only) are shown. Fully sampled data is shown on 
the left. Noise was efficiently suppressed by the proposed method. 

l1-denoised Autocalibrating Parallel Imaging 
 

T. Zhang1, M. Lustig1,2, S. Vasanawala3, and J. M. Pauly1 
1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Electrical Engineering and Computer Science, UC Berkeley, Berkeley, CA, United States, 

3Radiology, Stanford University, Stanford, CA, United States 
 

Introduction: There has been a rising interest in combining parallel imaging (PI) [1,2] with 
compressed sensing (CS) [3] to achieve high acceleration and reduce the noise amplification 
that comes from traditional PI reconstruction (e.g. SENSE[1], GRAPPA[2], etc). Existing 
approaches are: (a) sequentially apply PI and CS [4]; (b) sequentially apply CS and PI [5]; (c) 
simultaneously apply PI and CS [6-8]. However, noise correlation introduced by 
autocalibrating PI reconstruction has not been utilized before. In this work, we present a novel 
sequential approach that consists in first applying GRAPPA followed by CS. We use the fact 
that a noise covariance matrix of the GRAPPA reconstruction can be constructed from the 
GRAPPA interpolation kernels. The covariance matrix is used to “intelligently inform” the CS 
optimization about the confidence levels of the PI reconstruction entries. This results in better 
CS reconstruction that efficiently suppresses noise and provides high image quality.  
Theory and Method: As shown in Fig. 1, after GRAPPA data synthesis, reconstructed 
entries are correlated. In presence of noise, the synthesized value for each point and its 
variance tell us the range of the true value of the point; the covariance matrix tells how the 
noise is correlated. With this knowledge, CS optimization can then suppress the noise 
according to its underlying correlation. Let y be the entire acquired k-space grid data for all 
coils, xi be the entire k-space grid data for the ith coil, and Gi be the GRAPPA 
interpolation matrix for the ith coil. Data synthesis can then be written as: xi = Gi y. 
For simplicity, assume the noise for the acquired data is independently identically 
distributed (i.i.d.) Gaussian noise with variance σ2 (the actual noise correlation of 
the acquired data could be obtained with an extra scan). Post synthesis, the 
covariance matrix of the noise Σi for the ith coil is: Σi = σ2GiGi

H . Equipped with 
this information, we perform a modified CS optimization. Joint sparsity is used as 
the objective function [5,6,10]:  
       minimize Σr(Σi||wi(r)||2)1/2, subject to ||Σi

-1/2(xi -xi)||2
 <ε,  wi=ψF-1xi , i=1, … n,  

where xi is the GRAPPA reconstruction result, xi is the actual k-space data, F is a 
Fourier transform operator, and ψ is a sparsifying transform operator. It is difficult 
to calculate the inversion of Σi directly. Instead, we approximate the inversion of 
Σi iteratively while calculating the nonlinear conjugate gradient of the objective 
function [3]. Furthermore, approximation of Σi (e.g., only considering the 
variance) can also save computation cost. Individual coil images are combined 
using sum-of-squares.  
Results:  A phantom simulation was performed to demonstrate the 
proposed method (Fig. 2). Eight-channel Shepp-Logan phantom data 
set (image size: 128x128) was generated with i.i.d Gaussian noise 
added separately into each image (SNR=50). Jittered sampling [9] 
with 2x2 (ky x kz) undersampling and autocalibrating signals 20x20 
was applied. GRAPPA reconstruction was performed with 
interpolation kernel size 7x7. Total variation (TV) penalty was used 
for l1 constraints. Similar reconstruction results were achieved by 
only considering the variance information. However, reconstruction 
was less accurate when no covariance information was used. 
Simulation with similar parameters as in the phantom experiment 
was performed on an 8-channel 3D extremity exam acquired on a 
1.5T GE Signa Excite scanner. Reconstruction results of GRAPPA 
and proposed method with wavelet and TV penalties are shown in 
Fig. 3. As can be seen, the proposed method efficiently reduced the 
noise that was amplified during GRAPPA data synthesis.   
Conclusion:  The proposed method sequentially applies GRAPPA 
and CS. Using the noise correlation obtained during GRAPPA data 
synthesis, l1-denoising can efficiently suppress noise according to its 
correlation and improve image quality. Using only variance information achieves similar reconstruction quality and further reduces 
computation cost. 
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