Improved k-t FOCUSS using a sparse Bayesian learning
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Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging
technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an /;-norm based compressed sensing dynamic MRI called k-t
FOCUSS which outperforms the existing methods. However, it is known that the restrictive conditions for /;, exact reconstruction usually cost more measurements than
Iy minimization. In this paper, we adopt a sparse Bayesian learning approach to improve k-t FOCUSS [1, 2] and achieve /, solution. We demonstrated the improved
image quality using cardiac cine imaging.
Theory: From compressed sensing perspective, the sparse approximation for dynamic MR imaging problem can be stated as follows:

min||pll;, subjectto |[v-Fp|<e, (€8]
where p1is a vector stacking sparse unknown sparse signals with size of M and v is a vector stacking under-sampled k-t measurements with size of N (N <M) .
Then, the sensing matrix F is defined by down-sampled Fourier transform along phase encoding direction multiplied with sparsifying transform. Solving Eq. (1) can
be recast in Bayesian terms by applying p(v|p)e< exp[—l//l lv-Fp ||%] and a priori distribution p(p) =< exp[—|| p ||§] . A priori distribution for Eq. (1) corresponds

to p=1. Then, Eq. (1) can be interpreted as a maximum a posteriori (MAP) estimation as follows:

fp=argmax p(v | p)p(p) = argmax p(p|v) . )
Then, using the expectation maximization (EM) algorithm with a set of latent variables 6, relatedto 0, Eq.(2) can be solved as follows:
E—step:0,() = () >P, M=step: ey =0,F7 (FO,F7 + A1)\ where ©, =diag(6,) . 3)

As p(p) is a priori distribution for the unknown p, as p—0, p(p) has a higher probability at || o|| p—0. This means that sparse solution has a higher
likelihood as desired. However, if p <1, the optimization is not convex so that the number of local minima combinatorially increases. Therefore, we cannot guarantee
that the /, (0 < p <1) minimization always solves a sparser solution than /; minimization.

To address this problem, sparse Bayesian learning (SBL) [3] uses an empirical prior, which is a flexible priori distribution dependent on a set of unknown
hyperparameters that must be estimated from the data. More specifically, instead of specifying /, norm, SBL imposes sparsity for each unknown pixel by assuming zero

mean Gaussian distribution with an unknown variance & . Then, the posterior density of o is obtained with

p(p|vi0) = p(p.v:0)]] p(p.v;0)d0=N(p.5), “
with mean and covariance given by:

p=0r a1+ rerfyly ®)

s=0-0rfr+reryre, where © =diag(f) . ©)

Then, when 8(i)=0, 0(i) is zero with probability of 1 as desired from Eq. (5). Therefore, sparsity of o is determined by the sparsity of hyperparmeters 6. In
other words, estimating the hyperparameters @ is equal to a model selection of a priori distribution. In this context, estimating sparse hyperparameters is the only
problem we have to address so that the unknown signal 0 can be integrated out. Then, the maximum likelihood of & can be calculated by minimizing the following

cost function:

L(0) =—2log] p(v| p) p(p;0)d p =—2log p(v;0) =log | Al + FOFT | v (A1 + FOFT) 1y . %)
Taking a derivative of Eq. (7) with respect to &, the minimizer can be achieved with the following fixed point iteration:
Ou() =1 Pa )P [(1= 0,12, G ®)

where 0, and X,,(i,7) are updated by mean and diagonal components of variance of Eq. (4). Finally, the optimal solution o is achieved by Eq. (5) when 6,
converges. Even if SBL does not appear to directly minimize /, norm of unknown signals p, it is proved that the globally optimal solution of SBL is equal to the
solution of /, minimization of o [3].

Interestingly, the only difference between k-t FOCUSS and SBL comes from the update equation of &, . Furthermore, if the denominator of Eq. (8) is a constant, the
update rule of SBL becomes exactly same with that of k-t FOCUSS with p=0.

However, the non-uniform denominator in Eq. (8) enables the size of local minima S-fold down sampling
set of SBL to be much smaller than that of k-t FOCUSS for p <1 . Hence, SBL

can help improve the image quality.
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Results: We have acquired 25 frames of full k-space data from a cardiac cine of a
patient at a 1.5 T Philips scanner. To evaluate the performance of SBL, 8-fold and
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13-fold down sampled k-t measurements were used for reconstruction. In both

cases, we observed that SBL reconstructs finer image structures while the results of

k-t FOCUSS show blurred image features. The MSE plots also show smaller errors

in k-t SBL at all of the time points. m
Conclusions: This paper described a novel MR imaging algorithm derived from w
an empirical Bayesian method. Instead of specifying [, (p <1) norm, assuming a oo
flexible prior which can be updated from measured data, more accurate sparse e
solution was obtained. -
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