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Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging 
technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t 
FOCUSS which outperforms the existing methods. However, it is known that the restrictive conditions for l1 exact reconstruction usually cost more measurements than 
l0 minimization. In this paper, we adopt a sparse Bayesian learning approach to improve k-t FOCUSS [1, 2] and achieve l0 solution. We demonstrated the improved 
image quality using cardiac cine imaging. 
Theory: From compressed sensing perspective, the sparse approximation for dynamic MR imaging problem can be stated as follows: 

1min || ||ρ ,   subject to 2|| ||Fν ρ ε− ≤ ,     (1) 
where ρ is a vector stacking sparse unknown sparse signals with size of M and ν is a vector stacking under-sampled k-t measurements with size of ( )N N M< . 
Then, the sensing matrix F is defined by down-sampled Fourier transform along phase encoding direction multiplied with sparsifying transform. Solving Eq. (1) can 
be recast in Bayesian terms by applying 2

2( | ) exp[ 1 || || ]p Fν ρ λ ν ρ∝ − − and a priori distribution ( ) exp[ || || ]p
pp ρ ρ∝ − . A priori distribution for Eq. (1) corresponds 

to 1p = . Then, Eq. (1) can be interpreted as a maximum a posteriori (MAP) estimation as follows: 
      ˆ arg max ( | ) ( ) arg max ( | )p p pρ ν ρ ρ ρ ν= = .         (2) 
Then, using the expectation maximization (EM) algorithm with a set of latent variables nθ  related to ρ , Eq.(2) can be solved as follows: 

2ˆ: ( ) | ( ) | p
n nE step i iθ ρ −− = ,  1

1ˆ: ( )H H
n n nM step F F F Iρ λ ν−
+− = Θ Θ + , where ( )n ndiag θΘ = .  (3) 

As ( )p ρ  is a priori distribution for the unknown ρ , as 0p → , ( )p ρ  has a higher probability at || || 0pρ → . This means that sparse solution has a higher 
likelihood as desired. However, if 1p < , the optimization is not convex so that the number of local minima combinatorially increases. Therefore, we cannot guarantee 
that the lp (0 1)p< < minimization always solves a sparser solution than l1 minimization. 
To address this problem, sparse Bayesian learning (SBL) [3] uses an empirical prior, which is a flexible priori distribution dependent on a set of unknown 
hyperparameters that must be estimated from the data. More specifically, instead of specifying lp norm, SBL imposes sparsity for each unknown pixel by assuming zero 
mean Gaussian distribution with an unknown varianceθ . Then, the posterior density of ρ  is obtained with  

ˆ( | ; ) ( , ; ) ( , ; ) ( , )p p p d Nρ ν θ ρ ν θ ρ ν θ θ ρ= ∫ = Σ ,     (4) 
with mean and covariance given by:  

1ˆ ( )H HF I F Fρ λ ν−= Θ + Θ ,       (5)  
1( )H HF I F F Fλ −Σ = Θ −Θ + Θ Θ ,      where ( )diag θΘ = .    (6)  

Then, when ( ) 0iθ = , ˆ ( )iρ  is zero with probability of 1 as desired from Eq. (5). Therefore, sparsity of ρ  is determined by the sparsity of hyperparmeters θ . In 
other words, estimating the hyperparameters θ  is equal to a model selection of a priori distribution. In this context, estimating sparse hyperparameters is the only 
problem we have to address so that the unknown signal ρ  can be integrated out. Then, the maximum likelihood of θ  can be calculated by minimizing the following 
cost function: 

1( ) 2 log ( | ) ( ; ) 2 log ( ; ) log | | ( )H H HL p p d p I F F I F Fθ ν ρ ρ θ ρ ν θ λ ν λ ν−= − ∫ = − = + Θ + + Θ .   (7) 
Taking a derivative of Eq. (7) with respect to θ , the minimizer can be achieved with the following fixed point iteration: 

2 1
1ˆ( ) | ( ) | (1 ( ) ( , ))n n n ni i i i iθ ρ θ −
−= − Σ ,      (8) 

where ˆnρ and ( , )n i iΣ are updated by mean and diagonal components of variance of Eq. (4). Finally, the optimal solution ρ̂  is achieved by Eq. (5) when nθ
converges. Even if SBL does not appear to directly minimize l0 norm of unknown signals ρ , it is proved that the globally optimal solution of SBL is equal to the 
solution of l0 minimization of ρ [3]. 
Interestingly, the only difference between k-t FOCUSS and SBL comes from the update equation of nθ . Furthermore, if the denominator of Eq. (8) is a constant, the 
update rule of SBL becomes exactly same with that of k-t FOCUSS with 0p = . 
However, the non-uniform denominator in Eq. (8) enables the size of local minima 
set of SBL to be much smaller than that of k-t FOCUSS for 1p < . Hence, SBL 
can help improve the image quality. 
Results: We have acquired 25 frames of full k-space data from a cardiac cine of a 
patient at a 1.5 T Philips scanner. To evaluate the performance of SBL, 8-fold and 
13-fold down sampled k-t measurements were used for reconstruction. In both 
cases, we observed that SBL reconstructs finer image structures while the results of 
k-t FOCUSS show blurred image features. The MSE plots also show smaller errors 
in k-t SBL at all of the time points.  
Conclusions: This paper described a novel MR imaging algorithm derived from 
an empirical Bayesian method. Instead of specifying lp  ( 1)p ≤ norm, assuming a 
flexible prior which can be updated from measured data, more accurate sparse 
solution was obtained.  
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