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Introduction: The characterization of multi-fiber structures within a voxel has potential for broad clinical applications in advanced fiber tracking methods and tissue 
classifications approaches. Detailed characterization of this structure with q-ball [1] or diffusion spectrum imaging [2] is severely limited by practical considerations 
such as long scan times, low signal-to-noise ratio (SNR), and hardware constraints. Although typically considered an image reconstruction technology, compressed 
sensing is a promising technique for the identification of diffusion-inferred intra-voxel structure (e.g., Crossing Fiber Angular Resolution of Intra-voxel structure, 
CFARI [3,4]). Notably, compressed sensing requires less data (and thus less scan time) than q-ball imaging and can utilize typical diffusion tensor imaging (DTI) 
acquisitions. Computational complexity is a major limitation of compressed sensing techniques as currently proposed for diffusion-inferred intra-voxel structure. 
“Efficient” numerical techniques are available for the nonlinear optimization problem in compressed sensing; however, these techniques are still far more involved than 
linear tensor estimation or the common Levenberg-Marquardt non-linear tensor fitting methods. Herein, we propose a technique for accelerated compressed sensing of 
diffusion-inferred intra-voxel structure utilizing adaptive refinement of a multi-resolution basis set. Adaptive CFARI yields similar accuracy to the full CFARI with a 
tenfold reduced complexity.  
 

Methods and Results: Adaptive CFARI can be used with either traditional [3] or non-negative [4] CFARI. Here, we use non-negative CFARI (CFARI+). In CFARI+, 
each voxel is modeled as a finite mixture of discrete and independent compartments. The observed signal, ܵ௞, along the ݇th diffusion weighting direction (݃௞) is 
determined by the exponential mixture model, ܵ௞ ൌ  ܵ଴ ∑ ௜݂݁ି௕  ௚ೖ೅ D೔ ௚ೖ ൅ ே௜ߟ  where ܵ଴ is a noise-free reference signal in the absence of diffusion weighting, ܰ is the 
number of possible compartments (tensors) within each voxel, ௜݂ is the (unknown) mixture component for each compartment, ܾ is the diffusion sensitization parameter, D௜ is the tensor associated with the ݅th compartment, and ߟ is a noise term that follows a Rician distribution. It is assumed that the reconstruction basis ሼD௜ሽ — i.e., the 
set of possible diffusion tensors that may comprise a voxel — is fixed and known (herein, fractional anisotropy=0.7, mean diffusivity=1 mm2/s). CFARI+ mixture 
fractions are determined with compressed sensing criteria, ݂ ൌ argmin௙:௙೔אሾ଴,ஶሻԡS ݂ െ ԡ௅ଶݕ ൅  is a strictly positive sparsity regularization parameter ߚ ԡ݂ԡ௅ଵ, whereߚ
and ௜݂ are restricted to be non-negative. CFARI+ accuracy improves with larger basis sets, but so does the computational time required as shown in Figure 1. A basis set 
with at 253 directions can be estimated in an average time of 32 ms per voxel (approx. 6 hours per brain). All times are reported for a single core 1.6 GHz notebook.  

Adaptive CFARI uses the same compressed sensing method as CFARI+ but shortens the time needed per voxel by decreasing the number of directions used 
in the sensing matrix. To achieve this, two passes are exploited. A first pass uses a small basis set, ζ1 (herein, a 7th order tessellation of a tetrahedron, 55 directions, the 
minimum angle between two directions is 16°). CFARI+ with ζ1 produces a coarse estimate of the intra-voxel structure in only 1.5 ms. Voxels with all mixture 
estimates below a set threshold (ε=0.1) are interpreted as isotropic and not reprocessed. A second pass of the remaining voxels is performed on a modified basis set (ζ3) 
derived from ζ1 and a larger basis set ζ2 (consisting of a 13th order tessellation of a tetrahedron, 253 directions, 6.5° separation). However, not all 253 directions are used 
in ζ3. For each direction in ζ1 that produces a mixture fraction greater than ε in the first pass, all directions of ζ2 that are within 12° of that direction are added to the 
directions of ζ1 to form ζ3 – which is determined on a per-voxel basis. On average, this adds 7 extra directions for each direction in ζ1 with a mixture fraction that 
exceeds ε. If the number of directions that exceed ε is greater than a set threshold (herein, 5), then that voxel is reprocessed using the full ζ2. Estimation time averaged 
3.2 ms per voxel with a mean of 70±6 directions in the second pass.  

Simulations were conducted with a crossing fiber model: Two tensors (fractional anisotropy=0.7) were randomly selected to cross between 45º and 90º for 
1,000 Monte Carlo simulations. Synthetic observations with Rician noise were simulated with an SNR of between 10:1 and 40:1 (on an unweighted reference, Figure 2) 
for a typical DTI protocol. For an in vivo study, a healthy volunteer (M, 20 y/o) was scanned on a Philips 3T Achieva system with an eight channel head coil. Two 
traditional DTI acquisitions were acquired (each scan 4 min 4 s: 30 directions, ܾ=700 s/mm2, 5 averaged reference scans, SS-EPI, TR/TE=6410/69 ms). All scans 
achieved axial whole brain coverage (65x2.2 mm slices) with in plane resolution of 0.942 mm (2122 mm FOV, 962 matrix, SNR 15-20:1). Consistency of analysis with 
each CFARI approach was assessed (Figure 3). Note that the length of vectors is normalized within plots, but not across plots. The median angular difference between 
the adaptive and 253 direction CFARI was 8.5º, while it was 32º between CFARI with 55 and 253 directions. All analyses were performed with open source tools 
developed as part of the Java Image Science Toolkit (JIST, http://www.nitrc.org/projects/jist/ [5]). 
Discussion: The computational complexity of CFARI is approximately proportional to the square of the size of the reconstruction set (Figure 1). Since both passes of 
Adaptive CFARI use a small subset of the total possible directions, the algorithm is significantly faster without having to sacrifice accuracy. The adaptive resolution 
compressed sensing approach is shown to be highly effective in accelerating reconstruction of intra-voxel structure and enabling more practical application of CFARI in 
time-sensitive settings, routine data analysis, or in large studies. The successful results suggest that adaptive refinement of the basis set may be appropriate in other 
compressed sensing settings where coarse to fine approximation is possible.  
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