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Introduction: A novel theory, called Compressed Sensing (CS) [1, 2], has demonstrated that MR images can be successfully reconstructed from a 
small number of k-space measurements [3]. The practical impact and success of CS in imaging applications can be attributed to the fact that most 
signals of practical interest have sparse representations in a transform domain. While initial CS techniques assumed that the sparsity transform 
coefficients are independently distributed, recent results indicate that dependencies between transform coefficients can be exploited for improved 
performance [4]. In this paper, we propose the use of a Gaussian Scale Mixture (GSM) model for exploiting the dependencies between wavelet 
coefficients in CS MRI. Our results indicate that the proposed model can significantly reduce the reconstruction artifacts in wavelet-based CS MRI. 

Theory: The wavelet-based CS MRI can be represented as the following minimization problem: 
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min  s.t. M− ≤x b Ax x , where x  denotes wavelet coefficients of the image to be reconstructed, b  is 

the undersampled k-space measurements, and 1
u

−=A F ψ  is a matrix representing the sequential 

application of the inverse wavelet transform 1−ψ and the undersampled Fourier transform uF . Iterative 
Hard Thresholding (IHT) [5] is a simple CS technique that solves this problem through the following 
iterative algorithm: 1 ( ( ))n n H n

MH μ+ = + −x x A b Ax , where nx  refers to the solution at iteration n  and MH  
is a nonlinear operator that retains the M  largest coefficients. μ  is the optimal step size to minimize 
errors in each iteration [5]. In image compression and denoising, prior information about the structure of 
wavelet coefficients has been utilized successfully [6]. Our goal in this work is to exploit such structure 
within the IHT framework.  
Method: In IHT, estimates of the wavelet coefficients are formed at each iteration. The key idea in this 
work is to include an additional step (at each iteration) to refine these estimates based on a model which 
exploits dependencies between wavelet coefficients. We adopt a model which has been successfully 
employed in wavelet based image denoising applications [7]. Let x%  denote the observed (noisy) 
coefficients in a neighborhood. We assume that the observed coefficients can be expressed as x = y + w%  
where y  is a vector containing the uncorrupted coefficients and w  is a vector which accounts for both 
estimation noise and aliasing artifacts. For simplicity, we model w  as zero-mean Gaussian with 
covariance matrix wC . The wavelet coefficients y  are  modeled using a Gaussian Scale Mixture (GSM) 

such that z=y u , where z  is an independent scalar random variable and u  are zero-mean Gaussian 
with covariance matrix uC . Using this model, the Bayes least squares estimate of a coefficient in the 

center of a particular neighborhood Cy  is given by 
0
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= ∫x x x% % % . We refer the reader 

to [7] for a detailed explanation on computation of quantities such as uC , ( | )p z x% , and E{ , }Cy zx% in this 
framework. Denoting this modeling and estimation algorithm with the operator BLS GSMD − , the improved IHT algorithm can be now stated 

as: 1 ( ( ( )))n n H n
M BLS GSMH D μ+

−= + −x x A b Ax . Experiments were carried out on both a computer generated phantom and in vivo data. The k-space data for 
the phantom (256 × 256 pixels) were obtained by sampling k-space along 100 radial views with 256 points along each view. The in vivo dataset was 
obtained by selecting one sagittal slice (256 × 256 pixels) out of a 3D brain dataset. The k-space data for the in vivo dataset were obtained by 
sampling k-space along 130 radial views with 256 points along each view. The orthonormal Daubechies wavelet with 3 vanishing moments and 5 
levels of decomposition was used as the sparsity transform in IHT. Overcomplete steerable pyramid wavelet was used during statistical modeling 
step. The stopping criterion for IHT was set to the l-2 norm of residual being less than 10-16.  
Results: Fig. 1 shows the original phantom image, the image obtained using FFT, the image obtained by the proposed technique (BLS-GSM IHT), 
and the image obtained using the conventional IHT. While both IHT techniques significantly reduce undersampling artifacts, BLS-GSM IHT is able 
to further reduce artifacts both along edges and in smooth areas of the image. Sections of the reconstructed images are shown in Fig. 2 to enable 
closer inspection of the reconstruction artifacts. Fig. 3 shows the original image, the BLS-GSM IHT reconstructed image, and the conventional IHT 

reconstructed image for the in vivo dataset. As the enlarged 
sections of these images (Fig. 4) illustrate, the BLS-GSM 
IHT technique eliminates the residual artifacts present in 
the IHT reconstructed image. In addition to improved 
image quality, the proposed technique reduces 
reconstruction time compared to the conventional IHT 
algorithm as well. While the conventional IHT algorithm 
required 188 iterations to converge for the in vivo dataset, 
BLS-GSM IHT required only 14 iterations.  
Conclusions: A novel CS MRI technique that exploits 

dependencies between wavelet coefficients is introduced. The proposed 
method significantly reduces residual reconstruction artifacts and 
reconstruction time. The proposed framework can also be extended to CS MRI 
techniques other than IHT as well. 
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