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Introduction: Compressed sensing (CS) is an acquisition and reconstruction technique that can dramatically reduce the measurement size [1]. Its 
promise to improve imaging speed of MRI has been successfully demonstrated with the wavelet transform [2]. However, conventional CS MRI still 
suffers from: possible reconstruction failure causing residual incoherent artifacts, image quality degradation resulting in poorer spatial resolution, and 
complicated integration with other existing acceleration methods. Wavelet subbands typically contain different sparsities due to multi-resolution 
analysis and wavelet-tree structure; high-frequency subbands (Fig 1: HL, LH, and HH) are the largest and most sparse regions in the wavelet. 
Separate Fourier sampling of each wavelet subband exploits this subbands sparsity in acquisition and can improve reconstruction performance [3]. 
Here, we present a new method, which applies CS to only high-frequency subbands to maximally utilize the wavelet characteristics while minimizing 
reconstruction artifacts, and allowing easy incorporation of other rapid imaging techniques. 
 

Theory: Let Φ denote the undersampled Fourier measurement matrix, Ψ the wavelet transform 
(J is the finest scale), and wn the wavelet coefficients on subband n. The acquired data y can be 
decomposed into k-space data generated from each wavelet subband: 

y = yJ,HL + yJ,LH + yJ,HH + yJ-1,HL + yJ-1,LH + yJ-1,HH + yLL  
where yn is k-space data generated from wavelet coefficients on subband n, and yLL is a sum of 
yn, n = 0,..,J-2. yn after reweighting (by the Fourier-wavelet spectrum) is simply the 
undersampled Fourier transform of wn, and therefore separate CS can be performed for each wn.  
 

Methods: Identical incomplete k-space data should be acquired on each wavelet subband (for 
scale J-1 and J) to be able to decompose yn from y.  
I. Sampling Mask Generation (Fig 2):  

1. Generate a random sampling mask (mJ-1: n/4 × n/4) by a reduction factor of 8 – 10.  
2. Tile mJ-1 on a 3 × 3 grid and crop it so that the final size is twice the original (mJ: n/2 × n/2).  
3. Tile mJ on a 3 × 3 grid and crop it (m: n × n) with adding full sample region (n/2 × n/2). m is the 
final k-space sampling with the overall reduction factor (R) of 2.9 – 3.2.  

II. High-frequency Subband CS: 
1. Estimate k-space content (yLL). Since the fully sampled region (white box) covers almost 
all-spectral weighting, estimation yLL using a zero filling reconstruction is nearly perfect. 
Compute the residual by subtracting yLL from y (Δy = y - yLL). 
2. Decompose yn from Δy using mJ-1.  
3. Apply CS for yn after reweighting to estimate wn. L1 minimization is performed three 
separate times (for HL, LH, and HH) using mJ.  
4. Compute k-space content (yJ,HL, yJ,LH, and yJ,HH), and subtract them from Δy. Use 
inverse Fourier and wavelet transforms to calculate wavelet coefficients on J-1 scale. 

Daubechies-8 wavelets were used as a sparsifying transform with 3 wavelet scales (J=3). 
Constrained L1 minimization was solved by L1-regularized least squares method [4]. 
Fully sampled phantom and brain data (512 × 512) with sampling mask (both frequency 
directions were randomly selected) were used to validate the method (R = 2.9).  
 

Results and Discussion: Fig 3 shows reconstruction results for phantom and human 
brain data. In phantom images, the high-frequency subband (HL) shows that non-zero 
coefficients were recovered by using HiSub CS, and high-frequency components in k-
space were well synthesized. The difference in the reconstructed images is subtle due to 
the fully acquired low-frequency region, but HiSub CS carries high-resolution structures 
whereas the zero-filling image does not. The regular CS similarly synthesizes high-
frequency content but was less accurate than HiSub CS (images not shown). In a brain 
example, HiSub CS maintains fine structures and the reconstructed image is almost 
identical to original. Note that L1 minimization naturally denoises outcomes, and 
different k-space regions have different denoising effects (low-frequency: no denoising 
and high-frequency: denoising). Extension to parallel imaging is simple because random 
and fully sampled areas are clearly separated. The method is also robust to reconstruction 
error since CS only involves in high-frequency region and possible errors on high-
frequency components have minimal effects on anatomical structures (i.e. no worse than 
zero filling).  
 

Conclusion: The proposed method considers variation in wavelet-domain sparsity and 
applies separate acquisition and reconstruction for high- and low-frequency subbands. 
The reconstructed images recover fine structures with successful reconstruction of each 
wavelet subband while image artifacts are restricted to high spatial frequencies.  
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Figure 2: Generation of k-space sampling patterns (m: n 
× n) for HiSub CS. 

Figure 1: The relationship between Fourier (Φ) 
and wavelet (Ψ) transforms. High-frequency 
subbands (HL, LH, HH) are both shown in the 
Fourier and wavelet domains.  

Figure 3: Examples of HiSub CS reconstruction for 
phantom and brain data (R=2.9). 
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