Fluorothymidine as a therapeutic response marker of the investigational anticancer agent RAF265: Insights from ¹⁹F-NMR and flow cytometry

A. Dzik-Jurasz¹, M. Lin², K. Dohoney³, J. McCormick⁴, M. Ising⁴, D. Stuart⁵, and D. Jespersen⁴

¹Oncology Translational Medicine, Novartis Pharmaceuticals Corporation, Inc, Florham Park, NJ, United States, ²Novartis Pharmaceuticals Corporation, Inc, NJ, United States, ³Novartis Institutes for Biomedical Research, Inc, Cambridge, MA, United States, ⁴Oncology Translational Medicine, Novartis Pharmaceuticals Corporation, Inc, East Hanover, NJ, United States, ⁵Novartis Institutes for Biomedical Research, Inc, East Hanover, NJ, United States, ⁵Novartis Institutes for Biomedical Research, Inc, East Hanover, NJ, United States, ⁵Novartis Institutes for Biomedical Research, Inc, East Hanover, NJ, United States, ⁵Novartis Institutes for Biomedical Research, Inc, Emeryville, CA

Introduction: The purine analogue 3'-deoxy-3'-fluorothymidine (FLT) was originally developed as an antiviral agent because of it's inhibition of DNA synthesis[1]. It is now used in its isotopic ¹⁸F form as a PET imaging marker of cellular proliferation and is advocated as an early indicator of therapeutic response[2]. The relationship between imaging FLT signal changes and underlying cellular processes however, remains limited. The aim of this study was to correlate changes in the cellular content of ¹⁹FLT in A375M cells treated with the investigational anticancer agent RAF265 (Novartis Pharmaceutical Corporation, NJ, USA) using ¹⁹F-NMR and flow cytometry (FC).

Materials and Methods

<u>Cell culture and flow cytometry</u> A375M cells, (melanoma cell line) were grown in Eagle's Minimal Essential Media (ATCC) with 10% HI FCS (Hyclone), penicillin 100U/ml and streptomycin 100ug/ml (Invitrogen). Cells were grown in either 1:1000 DMSO (control) or 1µM solution of the experimental drug RAF265. All experiments were performed in triplicate including one parallel experiment under identical conditions for Annexin V and cell cycle analysis. After 24 hours, 1.5 mM FLT (Sigma Aldrich, St.Louis, MO) was added to the culture for 2 hours following which an immediate perchloric acid extraction was performed on trypsinized cells. The lysate was collected, neutralized with KOH and frozen at -80°C for subsequent NMR analysis. FC measurements were performed on a B-D Canto II (BD Biosciences, San Jose, CA) with Diva software (BD Biosciences) and analyzed with FlowJo (TreeStar Inc., Ashland, OR) Analysis software with Dean-Jett-Fox cell cycle modeling.

 $\frac{10}{F-NMR}$ - All experiments were performed at room temperature on a Bruker 300 MHz DPX spectrometer equipped with a QNP probe. All samples were doped with D₂O to provide a spin-lock and 5-fluorouracil (Sigma Aldrich, St. Louis MO) as the internal ¹⁹F reference. ¹H-decoupled experiments were run using 4000 transients and a TD of 64k. The pH of the solutions remained constant. ¹H-decoupled spectra of ¹⁹FLT in aqueous solution were obtained under identical experimental conditions. LC-MS experiments were performed on samples using a Waters LC-MS system with an ACQUITY UPLC and a LCT Premier TOF mass spectrometer.

Results: Flow cytometry (table 1) indicated an 11% and 38% decrease in the proportion of cells in the S, G2/M phase and a 22% decrease in the proportion of cells in combined S+G2/M phase. There was a 15% increase in the proportion of cells in the G0/G1 phase and a 4% lower cell count in the treated samples. There was a 24% drop in the proportion of metabolically active cells as measured by the product of cell count and proportion of cells in the G2/M phase. Samples from the treated group returned ¹⁹F-NMR spectra with a distinctly lower amplitude resonance than controls (fig.1) suggesting drug treated cells have a lower content of NMR detectable ¹⁹F-nuclei over controls. In addition, comparison of ¹⁹F-spectra from the lysate against ¹⁹FLT in aqueous solution (fig.2) suggests a chemically distinct ¹⁹F-species in the cell extract. LC-MS data of the cell extract shows FLT is absent, but a component with MW of 324 that is, 80 D higher than FLT was observed. On the basis of mass-spectroscopy and NMR the ¹⁹F resonance of the cell extract is tentatively assigned to a phosphate metabolite of FLT.

Discussion and conclusion: To the authors' best knowledge this is the first description via ¹⁹F-NMR of the metabolism of ¹⁹FLT in cellular culture. ¹⁹FNMR demonstrated a substantially diminished ¹⁹F resonance in cells treated with RAF265 over the control group and coincided with a change in the FC cell count and cell cycle profile indicating cellular modulation by RAF265. The results suggest that the ¹⁹FNMR reflects a change in the proportion of cells in the cell-cycle but without a substantial change in cell number. The ¹⁹F resonance in the cell extract was clearly distinct to FLT in aqueous solution and is tentatively assigned to a phosphate metabolite of FLT on the basis of our initial MS results and previous literature[3, 4]. In conclusion, we have demonstrated that ¹⁹FNMR and FC can be combined to understand the behavior of ¹⁹FLT in the presence of an anticancer agent. This could help interpret signals detected in the clinic.

Figure 1 (left): ¹⁹FNMR from cell extracts of RAF265 treated A375M cells (red spectra) and untreated cells (black spectra) - spectra are referenced to 5FU at 0 ppm and Figure 2 (right): ¹⁹FNMR spectra from untreated cell extracts (black spectra) and aqueous solution of ¹⁹FLT (blue spectrum) – spectra are referenced to 5FU at 0 ppm

	G0/G1 (%)	S (%)	G2/M (%)	S+G2/M (%)	Cell count (×10 ⁶)	Met active cells (×10 ⁶)
Control	55.5	20.9	14.1	35	11.2	3.92
RAF265	63.6	18.7	8.8	27.5	10.8	2.97
Change	▲ 15%	▼ 11%	▼ 38%	▼ 22%	▼ 4%	▼24%

References

1. Flexner, C., et al., *Relationship between plasma concentrations of 3'-deoxy-3'-fluorothymidine (alovudine) and antiretroviral activity in two concentration-controlled trials.* J Infect Dis, 1994. **170**(6): p. 1394-403.

2. Bading, J.R. and A.F. Shields, *Imaging of cell proliferation: status and prospects.* J Nucl Med, 2008. **49 Suppl 2**: p. 64S-80S.

3. Grierson, J.R., et al., *Metabolism of 3'-deoxy-3'-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography.* Nucl Med Biol, 2004. **31**(7): p. 829-37.

4. Matthes, E., et al., *Phosphorylation, anti-HIV activity* and cytotoxicity of 3'-fluorothymidine. Biochem Biophys Res Commun, 1988. **153**(2): p. 825-31.

Table 1 (above): Representing changes in the % of cells throughout the cell cycle and actual cell count with and without treatment