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Introduction: The high prevalence of overweight and obesity is a large health problem in many parts of the world [1]. Many children establish 
overweight or obesity in early childhood and these individuals risk remaining in that condition throughout life [2]. Both the total amounts of adipose 
tissue (AT), as well as its distribution, are well known health risk factors [3]. MRI allows assessment of both amount and distribution of AT. 
Automated segmentation algorithms have the potential to remove the bias introduced by manual assessments. Most of the automated methods 
developed and validated have focused on assessments in adult subjects. Measurements in children add two main challenges. The first is the 
compliance to the MR procedure. Generally, the younger the child is, the more challenging is the MR imaging. Secondly, children are smaller and 
have less AT, which reduces relative assessment accuracy. 
 
Methods: The subjects included in this study were 21 healthy children (10 girls, 11 boys) of age 5 (BMI 14.8±1.2kg/m2). Imaging was performed 
with a 1.5T clinical MR system (Signa HDx Twinspeed, GE Medical Systems, WI, USA). A T1-weighted 3D dual gradient-echo sequence (LAVA-
FLEX, supplied by GE Medical Systems) that acquired fat/water images in one acquisition using an 8-channel cardiac coil and a 2-point Dixon 
technique was used. A volume of 16 transversal 10 mm thick slices was centred over L4. Scan parameters were: TR 6.5ms, TEs 2.4, 4.8ms, flip angle 
12 deg, FOV 32x24 cm, matrix 256x128, NEX 0.7. Reconstructed voxel size 1.25x1.25x10mm. Imaging time 6 s. 
The fully automated analysis used the water and fat images to measure the volumes of visceral and subcutaneous AT (VAT and SAT). The main steps 
of the algorithm are illustrated in Fig 1. Firstly, the water and fat images are used to calculate three other basic images denoted sum (water + fat), fat 
fraction (fat/sum), and water fraction (water/sum) respectively, see Fig 1a-e. The abdomen was separated from background and arms by use of fuzzy 
clustering (Liew2003) of the water, fat and sum images into three classes (AT, muscle/organs, and background) in combination with morphological 
operations. The background cluster is shown in Fig 1f. A weak “belongingness” (<10%) to the background cluster was used as the binary 
classification of the body. AT was determined from the fat fraction image by thresholding at 50% fat content, Fig 1g. A binary mask (mask1) was 

used to separate the SAT from the rest of the abdomen, 
Fig 1h. Mask1 was created by thresholding the water 
fraction image at 50% water content. All but the 
largest connected object in 3D was then removed to 
reduce the response from water-signal in the SAT and 
skin regions. A slice-wise convex hull was then used 
to ensure that the mask1 was a closed convex object. 
The SAT was determined as the AT “outside” mask1. 
Since mask1 was convex SAT might be excluded in 
non-convex regions of the abdominal muscles. To 
correct for this, the SAT region was allowed to extend 
inwards (for an empirically determined distance) by 

including connected AT-pixels. The VAT was determined as the AT inside the mask1 after exclusion of bone marrow (BM) and intramuscular AT 
(IMAT). The exclusion was performed by use of a geometrical pelvis probability model, Fig 1i. The model was created by summing distance 
transforms of manual delineations in eight subjects, not included in this study, of the same age. VAT and SAT reference segmentations were created 
to evaluate the automated segmentations of VAT and SAT. The reference measurements were created by semi-automated segmentation of the 
calculated fat fraction images. Three operators manually delineated the VAT region and the regions containing BM and IMAT in all slices. The VAT 
reference was determined by the voxels with fat fraction greater than 50% inside the manually delineated VAT region. The SAT reference was 
determined as the voxels, inside the body masks, outside the manually delineated regions of VAT, BM, and IMAT, with fat fraction greater than 50%. 
For objective suppression of random fat fractions from low MR signal regions the same suppression as in the automated approach was used. 
 
Results: The correlations between the mean 
reference and the automatically segmented 
volumes were 0.977 and 0.999 for VAT and 
SAT, respectively. The VAT volumes from the 
automated segmentation were not seen to 
differ from the manually segmented (Auto - 
Manual = -4.0%±10.3%). However, the 
automatically segmented SAT volumes were 
underestimated by 9.4%±3.8% compared to 
the manually segmented volumes. The 
precision results for the automatically 
determined volumes of VAT and SAT are shown in Fig 2. For VAT, True positive (TP) and False Positive (FP) values were 87%±9% and 14%±9%, 
respectively. For SAT, the values were 90%±3% and 0.0%±0.0%, respectively. The automated segmentation required, on average, 31 seconds per 
abdomen, when executed on an Intel 2.40GHz, 2GB PC, while the manual segmentation required on average 16.9 minutes. 
 
Conclusion: We have presented and validated an imaging protocol which, in combination with a fully automated post processing, allows time 
efficient and robust analysis of body composition in young children. 
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Fig 2: Accuracy (True Positive, TP and False Positive, FP) of the automated VAT and SAT segmentations.   

 
Fig 1: Segmentation algorithm illustration. A-e) Fat, water, sum, fat fraction, water fraction 
images. F) Background cluster, g) thresholded adipose tissue, h) mask1, i) pelvis probability 
model, j) segmented VAT and SAT. 
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