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INTRODUCTION 
Probabilistic atlases have been established in the literature as a standard tool for enhancing the intensity-based classification of brain MRI. The rapidly growing neonatal 
brain requires an age-specific spatial probabilistic atlas to guide the segmentation process. In this paper we describe a method for dynamically creating a probabilistic 
atlas for any chosen stage of neonatal brain development. We present an atlas created from the segmentations of 153 subjects providing prior tissue probability maps for 
six structures - cortex, white matter, subcortical gray matter, brainstem and cerebellum, for ages of 29 to 44 weeks of gestation. 
 
CREATING AGE-SPECIFIC PROBABILISTIC ATLASES 
Traditionally, probabilistic atlases are created from a large number of manually segmented anatomical images I1 ..., In. The images are typically registered into a single 
reference space via affine transformations A1,...,An. The aligned images and corresponding segmentations are then averaged to produce a probabilistic atlas. However, 
such an atlas is biased towards the reference space and may not represent the average geometry of the population. Much of this bias can be removed if an average 
transformation is used to estimate the average space atlas. We represent affine transformations in 3D Euclidian space as 4 × 4 matrices acting on homogeneous 
coordinates. It is desired to average the affine transformations in relation to operation of composition. The group of transformations with the operation of composition 
does not form a vector space and linear average is therefore not defined. This can be overcome by estimating of the average for a set of affine matrices using matrix 
exponentials and logs, where the matrix exponential and logarithm are defined via Taylor expansion [1]. When building 4D atlas of the growing brain, we aim to create 
a continuous set of templates dependent on a parameter t which represents time, or in our case the age of the subjects. This can be achieved by kernel regression. Let 
t1,...,tn be the gestational ages (GA) of the subjects at the time of scan. Then the average transformation  at the age t and the average template image  at the age t 
can be estimated using Gaussian weights as 

 
Average age-dependent probability maps for each tissue are estimated analogically from the segmentations of the original images. 
 
SEGMENTATION OF TRAINING IMAGES 
The following structures were used to create probabilistic atlases: Cerebro-spinal fluid (CSF), subcortical WM, cortical GM, subcortical GM, brainstem and cerebellum.  
The central brain structures (subcortical GM, brainstem and cerebellum) were segmented by atlas-based segmentation where an atlas is propagated to the training 
images using non-rigid registration [2]. We used manual segmentations of three reference subjects (31, 36 and 41 weeks GA) as deformable atlases  and the training 
images were segmented using the atlas of the closest age. In contrast, the segmentation of cortical structures and CSF using atlas-based segmentation is problematic, as 
it is extremely difficult to establish correspondences across cortical surfaces. Therefore we segment the 
cortical region by fitting a mixture of Gaussians to the intensity histogram via Expectation-Maximization 
algorithm. The resulting segmentation in Fig. (b) shows considerable misclassifications due to the partial 
volume effect, resulting from the fact that intensities of voxels on the CSF-GM boundary are close to WM 
intensities. Similarly, the CSF-background boundary exhibits intensities of both GM and WM tissues. To 
correct the partial volume misclassifications, we reduce the prior probability of WM at each location, if 
both GM and CSF are present in the neighborhood (and similarly for CSF-background boundary), as 
suggested by Xue et al. [3].  We found that it is necessary to consider a 26-neighborhood to produce good 
results, as partial volume misclassifications can easily account for majority of voxels in a 6-neigbourhood 
of a voxel containing partial volume. An example of a segmentation using the above approach is shown in 
Fig. (c). Neonatal brains exhibit high variation of WM intensities, with darker corpus callosum, 
myelinated WM and “transitional fields” which are often misclassified as GM if 
only intensity information is used. Fortunately, these regions appear in the 
developing brain in predictable locations and we were therefore able to correct 
these misclassifications using atlas-based segmentations. 
 
RESULTS 
To create the 4D probabilistic atlas we used 153 T2-weighted fast spin echo images 
acquired on 3T Philips Intera system with MR sequence parameters TR = 1712ms, 
TE = 160ms, flip angle 90 deg, and voxel sizes 0.86×0.86×1mm. The age range at 
the time of scan was 26 to 47 weeks (GA), with mean and standard deviation of 
36.5 ± 5 weeks. All subjects were born prematurely. The images were bias 
corrected by N3 method [4] where bias field was parameterized by a B-spline with 
a control point spacing of 15mm. The non-brain tissue was removed by 
propagating a mask with registration [1]. The resulting anatomical templates and 
probability maps for WM, cortical GM and subcortical GM are shown on the right. 
 
CONCLUSION 
In this paper we presented a 4D dynamic probabilistic atlas for neonatal brain 
between 29 and 44 weeks GA. The newly developed probabilistic atlas can serve as 
a basis for application of the methods such as those developed in [5] for 
segmentation of neonatal brain at term-equivalent age to neonatal brain scans at 
earlier time-points and possibly also fetal MRI.  
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