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Table 1: Different SVM kernel functions (K) utilized.  
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Purpose: To assess the diagnostic accuracy of different kernel functions in predictive glioma grading by support vector machines (SVM) using 
dynamic susceptibility contrast MR imaging (DSC-MRI).  
 
Background: DSC-MRI is a method of choice to differentiate high grade gliomas (HGGs, WHO grade III-IV) from low grade gliomas (LGGs, 
WHO grade I-II). However, using the conventional “hot-spot” approach , a threshold has to be selected and those reported in literature show 
large variations[1]. Recently, SVM have been introduced as means to prospectively characterize gliomas [2]. Therefore, the choice of kernel 
function, a key concept of SVMs, influences prediction outcome and inappropriate kernels might result in poor performance [3]. Furthermore, in 
contrast to previously published work, the current method is fully-automatic using automatically segmented tumor volumes from DSC-MRI [4]. 
 
Materials and Methods 
101 previously untreated patients (aged 8-79 yrs, mean age 51; 51 
males, 50 females) received a histological diagnosis of primary glioma 

after MR perfusion 
imaging and subsequent 
surgery. DSC-MRI was 
performed at 1.5 Tesla 
using a single-shot 
Gadolinium-based GRE-
EPI sequence with 
TR/TE=1430/46 ms, 12 
axial slices, voxel size 1.80x1.80x5 mm3. For each slice, 50-70 images were recorded at intervals 
equal to the repetition time. Based on conventional MR images (T2-w, pre/post T1-w and 
FLAIR), binary glioma region-of-interests (ROIs) where derived from each MR tumor image 
slice automatic Fuzzy c-means clustering [4]. For each patient, a histogram signature (cf. Fig. 1) 
was derived from all normalized rCBV values in the glioma ROI [5]. From this, a feature vector 
was created including the histogram signatures of all patients. In addition, the corresponding 
patient ages were added to the feature vector, as high age is shown to correlate strongly with 
lower overall survival in glioma patients [6]. 
 
There are currently no techniques available to “learn” the form of the kernel [3]; as a 
consequence, common known kernel function as in Table 1 are usually applied. 
Optimal parameterization of ν,γ, κ, ϑ, and d was performed by grid search calculating maximal 
area-under-curve (AUC). As the class distribution between high- (63 samples) and low-grade 
glioma (38 samples) was not equal, the training and test sets were rebalanced by down sampling 
the larger class. Rebalancing was performed by randomly selecting 38 data sets of 63 HGG 
samples available to even the class distribution. Of the obtained 76 samples, 70% the formed the 
training and 30% the test set.  
 

Results 
Prediction of glioma grade from the 101 patients employing the 4 kernel functions yielded no 
good classification accuracy (LGGs <= 60% correct predictions). Rebalancing the training data, 
however, improved the classification accuracy significantly. Table 2 depicts these classification 
results. Optimal parameters for the Lin-SVM were ν=0.53, for RBF-SVM ν=0.34, γ = 0.02, for 
Poly-SVM d=1, ν=0.53, and for Sig-SVM κ=0.01, ϑ=-1.5, υ=0.69. Maximal AUC values 
obtained for these parameters ranges from 0.83 (Lin-/ Poly-SVM) to 0.87 (RBF-/ Sig-SVM). 
Best performance is obtained for the RBF-SVM with TPR=83% and TNR=91% (accuracy of 
87%). In comparison, a previous study using unbalanced data reported optimal values of 
TPR=76% and TNR=82% [2].  
 
Discussion 
Glioma grading by SVMs is feasible and the use of balanced subgroups in the training dataset 
was found to improve the diagnostic accuracy Furthermore, the choice of kernel function seems 
not to influence the classification results significantly. However, choosing a RBF kernel function 
yielded best performance. An attractive feature of the current work is that all features used to 
describe the classes where derived automatically, including tumor segmentation. This, in 
combination with the presented SVM classifier, a powerful tool is available to characterize 
glioma patients pre-surgically. 
 
References 
1. Law, M., et al., Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral 

gliomas. AJNR Am.J.Neuroradiol., 2007. 28(4): p. 761-766. 
2. Emblem, K.E., et al., Predictive Modeling in Glioma Grading from MR Perfusion Images using Support Vector Machines. Magn Reson Med, 2008. 
3. Chapelle, O., P. Haffner, and V.N. Vapnik, Support vector machines for histogram-based image classification. IEEE Trans.Neural Netw., 1999. 10(5): p. 1055-

1064. 
4. Emblem, K.E., et al., Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy 

clustering. J Magn Reson Imaging, 2009. 30(1): p. 1-10. 
5. Emblem, K.E., et al., Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology, 

2008. 247(3): p. 808-817. 
6. Martinez, R., C. Volter, and R. Behr, Parameters assessing neurological status in malignant glioma patients: prognostic value for survival and relapse-free 

time. British journal of neurosurgery, 2008. 22(4): p. 557-62. 

Model Accuracy TPR TNR 

RBF-SVM 87.0% 83% 91% 

Poly-SVM 82.6% 83% 82% 

Sig-SVM 82.6% 83% 82% 

Lin-SVM 82.6% 83% 82% 

Table 2: Classification results for different 
combinations of kernel function and SVM on 
rebalanced data. Results reflect models 
determined at optimal parameter settings. 
TPR depicts the percentage of correctly 
classify low-grade glioma whereas TNR is the 
rate of correct high-grade glioma 
classifications. 

 
Fig. 1: Normalized rCBV maps of the low-
grade patient (A) and high-grade patient (B). 
(C), the histogram signature of the low-grade 
glioma patient (black line) conveys a more 
homogenous distribution of normalized rCBV 
values compared the high-grade glioma 
patient (red line). Yellow circles depict tumor 
regions. 
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