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Introduction 
Standard arterial spin labeling (ASL) kinetic model [1] was based on the assumption that the arrival of labeled blood to the imaging slice is via plug 
flow. Later, Hrabe and Lewis [2] offered to convolve inverted bolus with Gaussian probability distribution function (in temporal domain) in order to 
relax this assumption. However, this approximation and having a Gaussian smoothing both at leading and trailing edges of the bolus, resulted in a 
non-zero signal at imaging slice even at t=0. To give a more realistic approach for the temporal dispersion effect, and -in addition- to correct the sharp 
increase of ASL signal for short arrival times, we propose here a modified version of Hrabe-Lewis model for pulsed ASL (pASL) signal and discuss 
its parameter estimation in a simulation with a realistic noise data coming from in vivo ASL measurements. 
Background 
The dispersion effect physically occurs in spatial domain. The dispersion of a spatial impulse (delta) function can be described using a Gaussian 
probability distribution with mean x and standard deviation, ),;'( txxN σ . It describes the probability of particle, originated from impulse at position x, 
being at position x' at time t. As the impulse moves towards the imaging slice, it is subject to Gaussian smoothing with time-dependent standard 
deviation ( 2Dt=σ t

) (adopted from diffusion equation solution, D: diffusion constant) [Figure 1]. The inversion pulse produces an initial bolus 
shape as boxcar function. When the leading edge of bolus arrived to the position x, the fraction of particles arrived to the imaging slice is calculated 
integrating ),;'( txxN σ  between (x2, x1) (x1: imaging slice-leading edge distance at the time of tagging, x2: imaging slice- trailing edge distance at 

the time of tagging).  If a linear transformation is used between spatial and temporal coordinates ( ( )τ+δtx δt,x t,=x 21 v=v=v ) where τδt,,v are 
the average velocity of bolus, transit time and temporal width of the bolus respectively), then the fraction of particles arrived to the imaging slice at 
time t can also be calculated as integrating ),;'( tttN σ  between (δt +τ, δt) with v=σ t /2Dt .When the last integral is written as error function and 
convolved with the tissue response, the correspondent ASL (magnetization difference) signal can be written as: 
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∫     (Eq. 1)  

where α is tagging efficiency, M0B is equilibrium magnetization of blood, f is flow, T1B is T1 of blood, T1,app is 
apparent T1  of tissue and v

D=k 2 . 
Methods 
ASL signal is plotted for correspondent parameter values using Hrabe-Lewis model, Standard Model, and 
proposed model for initial check. Common parameters f, δt, τ are set to 0.015 ml/g.s, 0.5s and 1s respectively. When setting up non-common 
parameters in Hrabe model and proposed model, we assume that if we wait enough (say t=2 s) for inverted blood to distribute, the total labeled bolus 
arrived is expected to be very close for both models. σ1 and σ2 set to 0.2 and 0.35 respectively as offered in [2], we found the correspondent k as 0.25.       
Eq.1 is approached numerically in MATLAB and used to estimate the parameters kδt,τ,f, . To check the accuracy of parameter estimation, we 
conducted a simulation. Eq.1 is used to produce synthetic data with the same parameters as above (20 simulations were performed with identical 
parameter values). Instead of adding noise from a mathematical model, we used the noise obtained from real data. One normal volunteer was imaged 
using a Siemens 3T Trio scanner, 5 axial slices were acquired; spatial resolution (4x4x10 mm), PICORE tagging scheme [3] is used with 10 
uniformly distributed TI’s between 200 and 2200 ms. For each TI, difference signals of selected voxels from background were added to the synthetic 
data. Curve fitting of our model was applied for synthetic ASL signals and from the gray matter (GM) voxels of real measurements from human 
brain. For comparison Hrabe-Lewis model is also fitted to the real data.  
Results and Discussion 
Both our proposed version and Hrabe-Lewis model itself use probability distribution functions to describe dispersion effect instead of exact physical 
modeling [4, 5]. Exact models are certainly more accurate if the assumed conditions were hold, but a physiological system has extensive 
complications; so we prefer probabilistic approaches to describe the system.  

 
Our proposed model, as summarized as Eq. 1, is identical with the ASL signal equation of Hrabe-Lewis model except the denominator of error 
function which is not constant in our model and includes a time parameter. The dispersion in our model is defined in spatial coordinates which is also 
easier to visualize (Figure 1), it is time dependent (σt=0=0 and it changes over time) so is more realistic than constant dispersion. Thus, the initial fast 
rise of the Hrabe-Lewis model is corrected [Figure 2].  
Table 1 summarizes the original and estimated model parameters in our simulation experiment that had realistic noise. High variations in k estimates 
are observed, but f values seem to be quantified well. Currently, we are not interested in interpretations of the parameter k, and use it only for 
correction term for quantification of f. Figure 3.b show that in overall our model gives better fits than Hrabe-Lewis model in real data (based on 
measured SSE’s). Number of free parameters was also same for both models, since σ2 taken dependent to σ1 [2]. 
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