MT effect of Q2TIPS in multiple inversion time ASL acquisitions
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Introduction. In arterial spin labelling (ASL) the delay between the application of the tag and the arrival of the tagged blood into the tissue (bolus arrival
time, BAT) is a potential source of systematic error in perfusion quantification, as it varies widely across individuals and brain regions. Q2TIPS [1](and its
predecessor QUIPSS Il [2]) is a modified pulsed ASL (PASL) technique designed to eliminate the confounding effect of BAT on cerebral blood flow
(CBF) estimates. In practice, the effectiveness of Q2TIPS depends on BAT values being within a specific range, and this assumption may be violated in
some neurovascular diseases, compromising the accuracy of CBF estimates. A more robust approach is to acquire PASL images with a range of post-
labelling delay times (Tl) [3,4]. Simultaneous estimates of local cerebral blood flow (CBF) and BAT can then be obtained using Buxton’s general kinetic
model [5]. Even with this multi-TI approach, it is useful to employ Q2TIPS saturation pulses for the longest Tl acquisitions, in order to precisely define the
temporal width of the tagged bolus and facilitate quantification. However, as well as saturating blood water in the tagging region, the Q2TIPS pulse train
will potentially have an indirect effect on the tissue and .
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Results and Discussion. Figure 1 shows the Ctr images of a single slice at all Tls for TI1=2700ms = ,,, | —————— - : iﬁﬂ,’jj‘.’

(a) and 1400ms (b). Fig. 1c shows the perfusion (Ctr-tag) signal for TI1=1400ms and gmBS2. Fig. C-0-0-0-0-02] WM sim
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2 shows actual (real) and predicted (sim) ROI Sl vs Tl for TI1=1000ms (a), 1400ms (b), 1400ms 0
with gmBS2, with fitted parameter reported in the Table (2-GM, 2-WM). For TI1=2700ms (fig 1a) 200 600 1000 1400 1800 2200 2600

the WM intensity in background tissue is stable whilst GM increases only slightly for the longer Tls. _ Tl (ms)
However when Q2TIPS is introduced (orange line in fig. 1b, 2a, 2b), the MT effect associated with (2¢) TI1 = 1400ms, gmBS2 :f:‘g’h“: 'eal'
the Q2TIPS pulses results in a reduction of the effective T1 and MO (T1sat, MOsat) for TI>TI1, 2301 WMr:i,a“
which disrupts the BS scheme: for all tissues we see a Sl ‘dip’ followed by an increase. As the _ GM sim
effectiveness of the BS of static signal deteriorates, the relatively small perfusion signal difference 3 10 e E
(Ctr-tag) becomes less precise as it is more affected by physiological noise in the tissue signal @ » = -u .
(plus potential subject motion). Moreover, this happens exactly when the perfusion signal starts to © N o-©-
decrease especially in GM (Fig. 1c). This behaviour can be simulated (the residual discrepancy in L \%’_—
predicted vs real data is likely to be due to the assumption of instantaneous pulses). Fig. 2c S -6-0--0-0"%
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variation can be reduced (both BS pulses can be shifted to minimise variations over a larger range T (ms)
of T1, T1/T1sat, MO/MOsat values). Whilst we have modelled the MT effect of the Q2TIPS pulses 1 (ms) T1satT1 MOsat/MO
on background tissue signal, perfused tissue and labelled blood will also be affected; this will
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pulses requiring lower power; (ii) increase the spacing of the Q2TIPS pulses (here, the cut-off
velocity v, associated with the Q2TIPS pulses [4] is ~280cm/s; e.g. by doubling the spacing v, becomes 140cm/s, still sufficient to saturate flowing blood
in the Q2TIPS slab).

Conclusions. Q2TIPS pulses have an MT effect on tissue and blood T1 and MO and thus have a detrimental effect on BS efficiency. Though BS
schemes can be adjusted to prevent a reduction in perfusion signal to noise ratio, this MT effect should also be taken into account when estimating CBF.
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