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Abstract Identifying manually corresponding tracks in different brain tractogaphies is a very complicated task, typically requiring lots of expertise, and 
lots of time. Moreover different local diffusion models and different tractography algorithms generate tractographies with wide differences in numbers of 
tracks and in shape characteristics. We address these problems by introducing an automatic method for detecting corresponding tracks in different dMRI 
(diffusion weighted MRI) datasets.  
Methods For two MNI registered brains, we generated two deterministic tractographies using DTK (Diffusion Toolkit) [1] with imaging model DTI and 
integration algorithms (a) FACT [5] and (b) second order Runge-Kutta (RK2). The output of DTK is a list of tracks i.e. curves composed of line segments. 
In our case each dataset contains ~200.000 tracks where each track in turn consists of up to several hundred segments. Manipulating this number of 
segments is computationally demanding. Therefore, we implemented a track approximation method based on the minimum description length principle 
as described by Lee et. al. [2], with the addition of a smoothing parameter.  Using this approximation method we can reduce considerably the number of 
segments per track while minimally reducing its resolution. Then we calculate distances between tracks using the mean average metric (MAM) as used 
by Corouge et.al [4] and Zhang et.al [3]. With this metric we identify corresponding tracks from different datasets with high consistency even where the 
global shapes of the  tracks differ markedly e.g. in length or curvature. We can extend this method to identify corresponding track bundles by finding 
each single corresponding track in the bundle. However this entails processing the full list of tracks each time we search for a match to a single track. For 
dMRI databases with high track density (e.g. DSI or Q-ball) this is too slow for practical applications. To overcome this we are developing a novel method 
that takes advantage of the local characteristics of the neighbourhood of the bundle. In order to do this we are implementing state-of-the-art discrete 
optimization methods e.g. alpha-expansion and primal-dual schemes [6] using the spring and reference track model described below. This model 
ensures that corresponding bundles (e.g. left and right corticospinal tracts) match in their local regions in the two brains but the underlying cost function 
is also rewarded for maintaining approximate symmetry. At the same time it takes advantage of using the local orientation profile from the nearby region. 
We believe that this is an efficient way to reduce the search time by adding some prior knowledge relating to locality and symmetry into our method. 

Results We acquired dMRI datasets from two 
healthy adult brains using the MRC-CBU 
Siemens Trio scanner with voxel size 
2x2x2mm, 64 directions, TR 9200 ms, TE 93 
ms, FoV read 256 mm and b-value 
1000s/mm2. An additional volume was 
acquired with b-value 0 s/mm2. Total duration 
of acquisition was 10' 27''.  Brain volumes 
were normalized and eddy current corrections 
applied with standard registration procedures. 
The red and blue brains in the upper panel 
are based on the same dMRI acquisition. The 
red tractography was generated using FACT 
and the blue was generated using RK2. The 
cyan brain was generated from a different 
subject using FACT. We randomly chose 
tracks labeled 0-8 in the red dataset. Our 
method finds the corresponding tracks in the 
other two datasets. The datasets are 
visualized simultaneously using our own 
specialized 3d engine Fos. The lower left 
picture shows the same brains from a different 
angle. Lower right picture shows the spring 
and reference track model designed to solve 
the bundle correspondence problem. This is 
an example to fit corticospinal bundles in 
normal brains. The spring indicates that the 
distance between left and right bundles is 
loosely constrained. The arrows represent the 
direction of the reference track of the bundle. 
The reference track is generated using the 
MAM metric. 

Conclusion 
We presented a novel method for identifying corresponding tracks in dMRI datasets of different modalities like DSI, Qball, HARDI, DTI and of different 
subjects. It requires that they are registered in the same space e.g. MNI. We also presented for first time the Fos 3d engine for multiple simultaneous 
visualization of many tractographic datasets. Fos will soon be released under a free software license. Finally we introduced a proposal to integrate local 
characteristics to reduce the search time when identifying corresponding bundles using state-of-the-art discrete optimization algorithms. 
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